Splitting for a non-Markovian tandem queue

Anne Buijsrogge Pieter-Tjerk de Boer Werner Scheinhardt

a.buijsrogge@tudelft.nl

May 18, 2021

Introduction

- *d* queues in tandem
- A_k inter-arrival time of customer $k + 1$
- \bullet $B_k^{(j)}$ $\kappa^{(U)}$ - service time of customer k in queue j
- Interested in the probability that the total number of customers reaches N before the system is empty again $= p_N$
- For large N , this is a rare event when the system is stable.

Introduction - Splitting

Figure: An example of splitting: a possible realization of particles and splitting thresholds. In this example, $\hat{p}_N = \frac{2}{9}$.

Introduction

- We want the estimator of p_N to be asymptotically efficient.
- This means that the relative error grows less than exponentially fast in N and that the computational effort grows less than exponentially fast in N.

Introduction

For the same model, importance sampling has been shown to be asymptotically efficient under some conditions.

For splitting, similar conditions turn out not to be necessary.

State space

Let $\mathsf{Z}_j=(Z_{1,j},\ldots,Z_{d,j},\bar{Z}_{0,j},\ldots,\bar{Z}_{d,j})$ be the state after j transitions.

- $Z_{i,j}$ is the number of customers at queue i
- \bullet $\bar{Z}_{0,j}$ is the residual inter-arrival time
- \bullet $\bar{Z}_{i,j}$ is the residual service time at queue i

We start with a busy cycle, i.e. $Z_0 = (1, 0, \ldots, 0, 0, \ldots, 0)$

State space

Let $\mathsf{Z}_j=(Z_{1,j},\ldots,Z_{d,j},\bar{Z}_{0,j},\ldots,\bar{Z}_{d,j})$ be the state after j transitions.

- $Z_{i,j}$ is the number of customers at queue i
- \bullet $\bar{Z}_{0,j}$ is the residual inter-arrival time
- \bullet $\bar{Z}_{i,j}$ is the residual service time at queue i

We start with a busy cycle, i.e. $Z_0 = (1, 0, \ldots, 0, 0, \ldots, 0)$

Let $\mathsf{Z}_j=(\mathcal{Z}_{1,j},\bar{\mathcal{Z}}_{0,j},\bar{\mathcal{Z}}_{1,j})$ be the state after j transitions $Z_0 = (1, 0, 0), Z_{i+1} = Z_i + V_Z(Z_i).$

$$
\mathbb{V}_{Z}(\mathsf{z}) = \begin{cases} \{ (1, -\bar{z}_{0} + a, -\bar{z}_{0}) : a \ge 0 \} & \text{if } \bar{z}_{0} < \bar{z}_{1} \\ \{ (-1, -\bar{z}_{1}, -\bar{z}_{1} + \mathbb{1}\{ z_{1} > 1 \} b_{1}) : b_{1} \ge 0 \} & \text{if } \bar{z}_{0} \ge \bar{z}_{1} \\ \{ (0, a, b_{1}) : a, b_{1} \ge 0 \} & \text{if } \mathsf{z} = \mathsf{Z}_{0}, \end{cases}
$$

Let $\mathsf{Z}_j=(\mathcal{Z}_{1,j},\bar{\mathcal{Z}}_{0,j},\bar{\mathcal{Z}}_{1,j})$ be the state after j transitions $Z_0 = (1, 0, 0), Z_{i+1} = Z_i + V_Z(Z_i).$

$$
\mathbb{V}_{Z}(\mathbf{z}) = \begin{cases} \{ (1, -\bar{z}_{0} + a, -\bar{z}_{0}) : a \ge 0 \} & \text{if arrival} \\ \{ (-1, -\bar{z}_{1}, -\bar{z}_{1} + \mathbb{1}\{z_{1} > 1\}b_{1}) : b_{1} \ge 0 \} & \text{if } \bar{z}_{0} \ge \bar{z}_{1} \\ \{ (0, a, b_{1}) : a, b_{1} \ge 0 \} & \text{if } \mathbf{z} = \mathbf{Z}_{0}, \end{cases}
$$

Let $\mathsf{Z}_j=(\mathcal{Z}_{1,j},\bar{\mathcal{Z}}_{0,j},\bar{\mathcal{Z}}_{1,j})$ be the state after j transitions $Z_0 = (1, 0, 0), Z_{i+1} = Z_i + V_Z(Z_i).$

$$
\mathbb{V}_{Z}(\mathbf{z}) = \begin{cases} \{(1, -\bar{z}_{0} + a, -\bar{z}_{0}) : a \ge 0\} & \text{if arrival} \\ \{(-1, -\bar{z}_{1}, -\bar{z}_{1} + \mathbb{1}\{z_{1} > 1\}b_{1}) : b_{1} \ge 0\} & \text{if service} \\ \{(0, a, b_{1}) : a, b_{1} \ge 0\} & \text{if } \mathbf{z} = \mathbf{Z}_{0}, \end{cases}
$$

Let $\mathsf{Z}_j=(\mathcal{Z}_{1,j},\bar{\mathcal{Z}}_{0,j},\bar{\mathcal{Z}}_{1,j})$ be the state after j transitions $Z_0 = (1, 0, 0), Z_{i+1} = Z_i + V_Z(Z_i).$

$$
\mathbb{V}_{Z}(\mathbf{z}) = \begin{cases} \{(1, -\bar{z}_{0} + a, -\bar{z}_{0}) : a \ge 0\} & \text{if arrival} \\ \{(-1, -\bar{z}_{1}, -\bar{z}_{1} + \mathbb{1}\{z_{1} > 1\}b_{1}) : b_{1} \ge 0\} & \text{if service} \\ \{(0, a, b_{1}) : a, b_{1} \ge 0\} & \text{if start}, \end{cases}
$$

Let $\mathsf{Z}_j=(\mathcal{Z}_{1,j},\bar{\mathcal{Z}}_{0,j},\bar{\mathcal{Z}}_{1,j})$ be the state after j transitions $Z_0 = (1, 0, 0), Z_{i+1} = Z_i + \mathbb{V}_z(Z_i).$

$$
\mathbb{V}_{Z}(\mathbf{z}) = \begin{cases} \{(1, -\bar{z}_{0} + a, -\bar{z}_{0}) : a \geq 0\} & \text{if arrival} \\ \{(-1, -\bar{z}_{1}, -\bar{z}_{1} + \mathbb{1}\{z_{1} > 1\}b_{1}) : b_{1} \geq 0\} & \text{if service} \\ \{(0, a, b_{1}) : a, b_{1} \geq 0\} & \text{if start,} \end{cases}
$$

where a,b_1 are any realization of the random variables A and $B^{(1)}$ respectively.

This means that depending on the state it is known which type of transition to take and almost each of them has infinitely many possibilities.

Let $\mathsf{X}_{j}=\frac{\mathsf{Z}_{j}}{N}$ $\frac{L_j}{N}$ be the *scaled* state of the system.

$$
\mathbf{X}_{j+1} = \mathbf{X}_j + \frac{1}{N} \mathbb{V}_X(\mathbf{X}_j),
$$

$$
\mathbb{V}_X(\mathbf{x}) = \begin{cases} \{ (1, -\bar{x}_0 N + a, -\bar{x}_0 N) : a \ge 0 \} & \text{if } \bar{x}_0 < \bar{x}_1 \\ \{ (-1, -\bar{x}_1 N, -\bar{x}_1 N + b_1 \mathbb{1} \{ x_1 > \frac{1}{N} \}) : b_1 \ge 0 \} & \text{if } \bar{x}_0 \ge \bar{x}_1 \\ \{ (0, a, b_1) : a, b_1 \ge 0 \} & \text{if } \mathbf{x} = \mathbf{X}_0, \end{cases}
$$

Let $\mathsf{X}_{j}=\frac{\mathsf{Z}_{j}}{N}$ $\frac{L_j}{N}$ be the *scaled* state of the system.

$$
\mathbf{X}_{j+1} = \mathbf{X}_j + \frac{1}{N} \mathbb{V}_X(\mathbf{X}_j),
$$

$$
\mathbb{V}_X(\mathbf{x}) = \begin{cases} \{(1, -\bar{x}_0 N + a, -\bar{x}_0 N) : a \ge 0\} & \text{if arrival} \\ \{(-1, -\bar{x}_1 N, -\bar{x}_1 N + b_1 \mathbb{1}\{x_1 > \frac{1}{N}\}) : b_1 \ge 0\} & \text{if service} \\ \{(0, a, b_1) : a, b_1 \ge 0\} & \text{if start,} \end{cases}
$$

How to choose the importance function?

• Using subsolutions:

- Using subsolutions:
	- Find a function $W(\mathbf{x})$ by solving $\mathbb{E}\left[e^{-\langle DW(\mathbf{x}), \mathbb{V}_{\chi}(\mathbf{x}) \rangle}\right] \leq 1$

- Using subsolutions:
	- Find a function $W(\mathbf{x})$ by solving $\mathbb{E}\left[e^{-\langle DW(\mathbf{x}), \mathbb{V}_{\chi}(\mathbf{x}) \rangle}\right] \leq 1$
	- Use boundary conditions: $W(\boldsymbol{X}_0) = \gamma(\boldsymbol{0}), \ W(\boldsymbol{X}_{\tau_N}) = 0.$

- Using subsolutions:
	- Find a function $W(\mathbf{x})$ by solving $\mathbb{E}\left[e^{-\langle DW(\mathbf{x}), \mathbb{V}_{\chi}(\mathbf{x}) \rangle}\right] \leq 1$
	- Use boundary conditions: $W(\boldsymbol{X}_0) = \gamma(\boldsymbol{0}), \ W(\boldsymbol{X}_{\tau_N}) = 0.$
	- The result is

$$
W(\mathbf{x})=(1-x_1)\gamma(\mathbf{0})-(\bar{x}_1-\bar{x}_0)\theta^*
$$

How to choose the importance function?

- Using subsolutions:
	- Find a function $W(\mathbf{x})$ by solving $\mathbb{E}\left[e^{-\langle DW(\mathbf{x}), \mathbb{V}_{\chi}(\mathbf{x}) \rangle}\right] \leq 1$
	- Use boundary conditions: $W(\boldsymbol{X}_0) = \gamma(\boldsymbol{0}), \ W(\boldsymbol{X}_{\tau_N}) = 0.$
	- The result is

$$
W(\textbf{x})=(1-x_1)\gamma(\textbf{0})-(\bar{x}_1-\bar{x}_0)\theta^*
$$

• Intuitively, $W(x)$ approximates the decay rate when starting at some point x.

- Using subsolutions:
	- Find a function $W(\mathbf{x})$ by solving $\mathbb{E}\left[e^{-\langle DW(\mathbf{x}), \mathbb{V}_{\chi}(\mathbf{x}) \rangle}\right] \leq 1$
	- Use boundary conditions: $W(\boldsymbol{X}_0) = \gamma(\boldsymbol{0}), \ W(\boldsymbol{X}_{\tau_N}) = 0.$
	- The result is

$$
W(\textbf{x})=(1-x_1)\gamma(\textbf{0})-(\bar{x}_1-\bar{x}_0)\theta^*
$$

- Intuitively, $W(x)$ approximates the decay rate when starting at some point x.
- Importance function $U(\mathbf{x}) = \min\{W(\mathbf{0}), W(\mathbf{0}) W(\mathbf{x})\}$

- Using subsolutions:
	- Find a function $W(\mathbf{x})$ by solving $\mathbb{E}\left[e^{-\langle DW(\mathbf{x}), \mathbb{V}_{\chi}(\mathbf{x}) \rangle}\right] \leq 1$
	- Use boundary conditions: $W(\boldsymbol{X}_0) = \gamma(\boldsymbol{0}), \ W(\boldsymbol{X}_{\tau_N}) = 0.$
	- The result is

$$
\mathcal{W}(\textbf{x}) = (1-x_1)\gamma(\textbf{0}) - (\bar{x}_1 - \bar{x}_0)\theta^*
$$

- Intuitively, $W(x)$ approximates the decay rate when starting at some point x.
- Importance function $U(\mathbf{x}) = \min\{W(\mathbf{0}), W(\mathbf{0}) W(\mathbf{x})\}$
- The use of the (negative) decay rate $-\gamma(x)$, starting at some general point x .

- Using subsolutions:
	- Find a function $W(\mathbf{x})$ by solving $\mathbb{E}\left[e^{-\langle DW(\mathbf{x}), \mathbb{V}_{\chi}(\mathbf{x}) \rangle}\right] \leq 1$
	- Use boundary conditions: $W(\boldsymbol{X}_0) = \gamma(\boldsymbol{0}), \ W(\boldsymbol{X}_{\tau_N}) = 0.$
	- The result is

$$
W(\textbf{x})=(1-x_1)\gamma(\textbf{0})-(\bar{x}_1-\bar{x}_0)\theta^*
$$

- Intuitively, $W(x)$ approximates the decay rate when starting at some point x.
- Importance function $U(\mathbf{x}) = \min\{W(\mathbf{0}), W(\mathbf{0}) W(\mathbf{x})\}$
- The use of the (negative) decay rate $-\gamma(x)$, starting at some general point x .
- Then $U(x) = min\{\gamma(0), \gamma(0) \gamma(x)\} = \gamma(0) \gamma(x)$.

$$
-\gamma(\mathbf{x}) = \lim_{N \to \infty} \frac{1}{N} \log \mathbb{P}(K_N(\mathbf{x}_N) < K_0(\mathbf{x}_N))
$$
\n
$$
= \begin{cases}\n0 & \text{if } \bar{x}_1 - \bar{x}_0 \ge (1 - x_1) \mathbb{E}[A], \\
(1 - x_1) \Lambda_A(-\theta) + (\bar{x}_1 - \bar{x}_0)\theta & \text{if } \bar{x}_1 - \bar{x}_0 = (1 - x_1) \mathbb{E}^{\theta} [A] \text{ for some } \theta \in (0, \theta^*), \\
(1 - x_1) \Lambda_A(-\theta^*) + (\bar{x}_1 - \bar{x}_0)\theta^* & \text{if } -x_1 \mathbb{E}^{\theta^*} [B] \le \bar{x}_1 - \bar{x}_0 \le (1 - x_1) \mathbb{E}^{\theta^*} [A], \\
\Lambda_A(-\theta^*) + x_1 \Lambda_B(\theta) + (\bar{x}_1 - \bar{x}_0)\theta & \text{if } \bar{x}_1 - \bar{x}_0 = -x_1 \mathbb{E}^{\theta} [B] \text{ for some } \theta > \theta^*,\n\end{cases}
$$

$$
-\gamma(\mathbf{x}) = \lim_{N \to \infty} \frac{1}{N} \log \mathbb{P}(K_N(\mathbf{x}_N) < K_0(\mathbf{x}_N))
$$
\n
$$
= \begin{cases}\n0 & \text{if } \bar{x}_1 - \bar{x}_0 \ge (1 - x_1) \mathbb{E}[A], \\
(1 - x_1) \Lambda_A(-\theta) + (\bar{x}_1 - \bar{x}_0)\theta & \text{if } \bar{x}_1 - \bar{x}_0 = (1 - x_1) \mathbb{E}^{\theta} [A] \text{ for some } \theta \in (0, \theta^*), \\
(1 - x_1) \Lambda_A(-\theta^*) + (\bar{x}_1 - \bar{x}_0)\theta^* & \text{if } -x_1 \mathbb{E}^{\theta^*} [B] \le \bar{x}_1 - \bar{x}_0 \le (1 - x_1) \mathbb{E}^{\theta^*} [A], \\
\Lambda_A(-\theta^*) + x_1 \Lambda_B(\theta) + (\bar{x}_1 - \bar{x}_0)\theta & \text{if } \bar{x}_1 - \bar{x}_0 = -x_1 \mathbb{E}^{\theta} [B] \text{ for some } \theta > \theta^*,\n\end{cases}
$$

$$
-\gamma(\mathbf{x}) = \lim_{N \to \infty} \frac{1}{N} \log \mathbb{P}(K_N(\mathbf{x}_N) < K_0(\mathbf{x}_N))
$$
\n
$$
= \begin{cases}\n0 & \text{if } \bar{x}_1 - \bar{x}_0 \ge (1 - x_1) \mathbb{E}[A], \\
(1 - x_1) \Lambda_A(-\theta) + (\bar{x}_1 - \bar{x}_0)\theta & \text{if } \bar{x}_1 - \bar{x}_0 = (1 - x_1) \mathbb{E}^{\theta} [A] \text{ for some } \theta \in (0, \theta^*), \\
(1 - x_1) \Lambda_A(-\theta^*) + (\bar{x}_1 - \bar{x}_0)\theta^* & \text{if } -x_1 \mathbb{E}^{\theta^*} [B] \le \bar{x}_1 - \bar{x}_0 \le (1 - x_1) \mathbb{E}^{\theta^*} [A], \\
\Lambda_A(-\theta^*) + x_1 \Lambda_B(\theta) + (\bar{x}_1 - \bar{x}_0)\theta & \text{if } \bar{x}_1 - \bar{x}_0 = -x_1 \mathbb{E}^{\theta} [B] \text{ for some } \theta > \theta^*,\n\end{cases}
$$

$$
-\gamma(\mathbf{x}) = \lim_{N \to \infty} \frac{1}{N} \log \mathbb{P}(K_N(\mathbf{x}_N) < K_0(\mathbf{x}_N))
$$
\n
$$
= \begin{cases}\n0 & \text{if } \bar{x}_1 - \bar{x}_0 \ge (1 - x_1) \mathbb{E}[A], \\
(1 - x_1) \Lambda_A(-\theta) + (\bar{x}_1 - \bar{x}_0)\theta & \text{if } \bar{x}_1 - \bar{x}_0 = (1 - x_1) \mathbb{E}^{\theta} [A] \text{ for some } \theta \in (0, \theta^*), \\
(1 - x_1) \Lambda_A(-\theta^*) + (\bar{x}_1 - \bar{x}_0)\theta^* & \text{if } -x_1 \mathbb{E}^{\theta^*} [B] \le \bar{x}_1 - \bar{x}_0 \le (1 - x_1) \mathbb{E}^{\theta^*} [A], \\
\Lambda_A(-\theta^*) + x_1 \Lambda_B(\theta) + (\bar{x}_1 - \bar{x}_0)\theta & \text{if } \bar{x}_1 - \bar{x}_0 = -x_1 \mathbb{E}^{\theta} [B] \text{ for some } \theta > \theta^*,\n\end{cases}
$$

$$
-\gamma(\mathbf{x}) = \lim_{N \to \infty} \frac{1}{N} \log \mathbb{P}(K_N(\mathbf{x}_N) < K_0(\mathbf{x}_N))
$$
\n
$$
= \begin{cases}\n0 & \text{if } \bar{x}_1 - \bar{x}_0 \ge (1 - x_1) \mathbb{E}[A], \\
(1 - x_1) \Lambda_A(-\theta) + (\bar{x}_1 - \bar{x}_0)\theta & \text{if } \bar{x}_1 - \bar{x}_0 = (1 - x_1) \mathbb{E}^{\theta} [A] \text{ for some } \theta \in (0, \theta^*), \\
(1 - x_1) \Lambda_A(-\theta^*) + (\bar{x}_1 - \bar{x}_0)\theta^* & \text{if } -x_1 \mathbb{E}^{\theta^*} [B] \le \bar{x}_1 - \bar{x}_0 \le (1 - x_1) \mathbb{E}^{\theta^*} [A], \\
\Lambda_A(-\theta^*) + x_1 \Lambda_B(\theta) + (\bar{x}_1 - \bar{x}_0)\theta & \text{if } \bar{x}_1 - \bar{x}_0 = -x_1 \mathbb{E}^{\theta} [B] \text{ for some } \theta > \theta^*,\n\end{cases}
$$

The (negative) decay rate - sketch of the proof

Sketch of the proof for the upper bound:

$$
\mathbb{P}\left(\mathsf{K}_\mathsf{N}(\mathsf{x}_\mathsf{N}) < \mathsf{K}_0(\mathsf{x}_\mathsf{N})\right) = \mathbb{E}^{\theta,\widetilde{\theta}}\left[L^{\theta,\widetilde{\theta}} \mid \mathsf{K}_\mathsf{N}(\mathsf{x}_\mathsf{N}) < \mathsf{K}_0(\mathsf{x}_\mathsf{N})\right] \mathbb{P}^{\theta,\widetilde{\theta}}\left(\mathsf{K}_\mathsf{N}(\mathsf{x}_\mathsf{N}) < \mathsf{K}_0(\mathsf{x}_\mathsf{N})\right)
$$

The (negative) decay rate - sketch of the proof

Sketch of the proof for the upper bound:

$$
\mathbb{P}\left(\mathsf{K}_{\mathsf{N}}(\mathbf{x}_{\mathsf{N}})<\mathsf{K}_{0}(\mathbf{x}_{\mathsf{N}})\right)=\mathbb{E}^{\theta,\widetilde{\theta}}\left[L^{\theta,\widetilde{\theta}}\mid\mathsf{K}_{\mathsf{N}}(\mathbf{x}_{\mathsf{N}})<\mathsf{K}_{0}(\mathbf{x}_{\mathsf{N}})\right]\mathbb{P}^{\theta,\widetilde{\theta}}\left(\mathsf{K}_{\mathsf{N}}(\mathbf{x}_{\mathsf{N}})<\mathsf{K}_{0}(\mathbf{x}_{\mathsf{N}})\right)
$$

Sketch of the proof for the lower bound:

- Similar proof as Sadowsky 1991 when $\bar{x}_0 = \bar{x}_1$.
- Lower bound probability by the product of the probability to end up in a state where $\bar{x}_0 = \bar{x}_1$ and the probability to reach the overflow level starting from this new state.

Need to show:

$$
\limsup_{N\to\infty}\frac{1}{N}\log\left(w(N)R^{-2J_N}\mathbb{E}\left[\,T^2\right]\right)\leq-2\gamma(\mathbf{0}),
$$

where T is the number of particles that reach the overflow level, $w(N)$ is the expected computational effort.

Need to show:

$$
\limsup_{N\to\infty}\frac{1}{N}\log\left(w(N)R^{-2J_N}\mathbb{E}\left[\,T^2\right]\right)\leq-2\gamma(\mathbf{0}),
$$

where T is the number of particles that reach the overflow level, $w(N)$ is the expected computational effort.

Prove that

\n- $$
\limsup_{N\to\infty}\frac{1}{N}\log\mathbb{E}\left[T^2\right]\leq 0
$$
\n

Need to show:

$$
\limsup_{N\to\infty}\frac{1}{N}\log\left(w(N)R^{-2J_N}\mathbb{E}\left[\,T^2\right]\right)\leq-2\gamma(\mathbf{0}),
$$

where T is the number of particles that reach the overflow level, $w(N)$ is the expected computational effort.

Prove that

- lim sup $_{N\rightarrow\infty}\frac{1}{N}$ $\frac{1}{N}\log\mathbb{E}\left[\left.\mathcal{T}^2\right.\right]\leq0$
- lim sup $_{N\rightarrow\infty}\frac{1}{N}$ $\frac{1}{N}$ log $w(N) \leq 0$

Need to show:

$$
\limsup_{N\to\infty}\frac{1}{N}\log\left(w(N)R^{-2J_N}\mathbb{E}\left[\,T^2\right]\right)\leq-2\gamma(\mathbf{0}),
$$

where T is the number of particles that reach the overflow level, $w(N)$ is the expected computational effort.

Prove that

- lim sup $_{N\rightarrow\infty}\frac{1}{N}$ $\frac{1}{N}\log\mathbb{E}\left[\left.\mathcal{T}^2\right.\right]\leq0$
- lim sup $_{N\rightarrow\infty}\frac{1}{N}$ $\frac{1}{N}$ log $w(N) \leq 0$
- The result follows.

• State space now has $2d + 1$ dimensions.

- State space now has $2d + 1$ dimensions.
- For $d > 1$ we can show a (non-trivial) upper and lower bound on $-\gamma(\mathbf{x})$.

- State space now has $2d + 1$ dimensions.
- For $d > 1$ we can show a (non-trivial) upper and lower bound on $-\gamma(x)$.
	- The lower bound follows by using the result for the single queue.
	- The upper bound uses the sojourn time and stopping times.

- State space now has $2d + 1$ dimensions.
- For $d > 1$ we can show a (non-trivial) upper and lower bound on $-\gamma(\mathbf{x})$.
	- The lower bound follows by using the result for the single queue.
	- The upper bound uses the sojourn time and stopping times.
- Use $W(x) = \min_{j=1,...,d} \left(-(x_1 + ... + x_j)\gamma(0) + (\bar{x}_0 \bar{x}_j)\theta^* + \gamma(0) \right).$

- State space now has $2d + 1$ dimensions.
- For $d > 1$ we can show a (non-trivial) upper and lower bound on $-\gamma(x)$.
	- The lower bound follows by using the result for the single queue.
	- The upper bound uses the sojourn time and stopping times.
- Use $W(x) = \min_{j=1,...,d} \left(-(x_1 + ... + x_j)\gamma(0) + (\bar{x}_0 \bar{x}_j)\theta^* + \gamma(0) \right).$
- Proofs for asymptotic efficiency are extendable to d -nodes.

• For $d = 1$ we can show that two splitting schemes are asymptotically efficient; one based on subsolutions and one based on the decay rate.

- For $d = 1$ we can show that two splitting schemes are asymptotically efficient; one based on subsolutions and one based on the decay rate.
- For $d > 1$ we need a splitting scheme based on subsolutions (which we might be able to extend to the decay rate as well).

- For $d = 1$ we can show that two splitting schemes are asymptotically efficient; one based on subsolutions and one based on the decay rate.
- For $d > 1$ we need a splitting scheme based on subsolutions (which we might be able to extend to the decay rate as well).
- Seems likely that these splitting schemes also work well for RESTART.

- For $d = 1$ we can show that two splitting schemes are asymptotically efficient; one based on subsolutions and one based on the decay rate.
- For $d > 1$ we need a splitting scheme based on subsolutions (which we might be able to extend to the decay rate as well).
- Seems likely that these splitting schemes also work well for RESTART.

Thank you for your attention!

Splitting for a non-Markovian tandem queue

Anne Buijsrogge Pieter-Tjerk de Boer Werner Scheinhardt

a.buijsrogge@tudelft.nl

May 18, 2021

