
Splitting for a non-Markovian tandem queue

Anne Buijsrogge Pieter-Tjerk de Boer Werner Scheinhardt

a.buijsrogge@tudelft.nl

May 18, 2021



Introduction

Ak B
(1)
k

· · · B
(d)
k

• d queues in tandem

• Ak - inter-arrival time of customer k + 1

• B
(j)
k - service time of customer k in queue j

• Interested in the probability that the total number of
customers reaches N before the system is empty again = pN
• For large N, this is a rare event when the system is stable.

2 / 15



Introduction - Splitting

t

n

N

0 t1 t2

c0N

c1N

c2N

Figure: An example of splitting: a possible realization of particles and
splitting thresholds. In this example, p̂N = 2

9 .

3 / 15



Introduction

• We want the estimator of pN to be asymptotically efficient.

• This means that the relative error grows less than
exponentially fast in N and that the computational effort
grows less than exponentially fast in N.

4 / 15



Introduction

For the same model, importance sampling has been shown to be
asymptotically efficient under some conditions.

For splitting, similar conditions turn out not to be necessary.

5 / 15



State space

Let Zj = (Z1,j , . . . ,Zd ,j , Z̄0,j , . . . , Z̄d ,j) be the state after j
transitions.

• Zi ,j is the number of customers at queue i

• Z̄0,j is the residual inter-arrival time

• Z̄i ,j is the residual service time at queue i

We start with a busy cycle, i.e. Z0 = (1, 0, . . . , 0, 0, . . . , 0)

6 / 15



State space

Let Zj = (Z1,j , . . . ,Zd ,j , Z̄0,j , . . . , Z̄d ,j) be the state after j
transitions.

• Zi ,j is the number of customers at queue i

• Z̄0,j is the residual inter-arrival time

• Z̄i ,j is the residual service time at queue i

We start with a busy cycle, i.e. Z0 = (1, 0, . . . , 0, 0, . . . , 0)

6 / 15



Single queue

7 / 15



Single queue

Let Zj = (Z1,j , Z̄0,j , Z̄1,j) be the state after j transitions
Z0 = (1, 0, 0), Zj+1 = Zj + VZ (Zj).

VZ (z) =


{(1,−z̄0 + a,−z̄0) : a ≥ 0} if z̄0 < z̄1

{(−1,−z̄1,−z̄1 + 1{z1 > 1}b1) : b1 ≥ 0} if z̄0 ≥ z̄1

{(0, a, b1) : a, b1 ≥ 0} if z = Z0,

where a, b1 are any realization of the random variables A and B(1)

respectively.

This means that depending on the state it is known which type of
transition to take and almost each of them has infinitely many
possibilities.

7 / 15



Single queue

Let Zj = (Z1,j , Z̄0,j , Z̄1,j) be the state after j transitions
Z0 = (1, 0, 0), Zj+1 = Zj + VZ (Zj).

VZ (z) =


{(1,−z̄0 + a,−z̄0) : a ≥ 0} if arrival

{(−1,−z̄1,−z̄1 + 1{z1 > 1}b1) : b1 ≥ 0} if z̄0 ≥ z̄1

{(0, a, b1) : a, b1 ≥ 0} if z = Z0,

where a, b1 are any realization of the random variables A and B(1)

respectively.

This means that depending on the state it is known which type of
transition to take and almost each of them has infinitely many
possibilities.

7 / 15



Single queue

Let Zj = (Z1,j , Z̄0,j , Z̄1,j) be the state after j transitions
Z0 = (1, 0, 0), Zj+1 = Zj + VZ (Zj).

VZ (z) =


{(1,−z̄0 + a,−z̄0) : a ≥ 0} if arrival

{(−1,−z̄1,−z̄1 + 1{z1 > 1}b1) : b1 ≥ 0} if service

{(0, a, b1) : a, b1 ≥ 0} if z = Z0,

where a, b1 are any realization of the random variables A and B(1)

respectively.

This means that depending on the state it is known which type of
transition to take and almost each of them has infinitely many
possibilities.

7 / 15



Single queue

Let Zj = (Z1,j , Z̄0,j , Z̄1,j) be the state after j transitions
Z0 = (1, 0, 0), Zj+1 = Zj + VZ (Zj).

VZ (z) =


{(1,−z̄0 + a,−z̄0) : a ≥ 0} if arrival

{(−1,−z̄1,−z̄1 + 1{z1 > 1}b1) : b1 ≥ 0} if service

{(0, a, b1) : a, b1 ≥ 0} if start,

where a, b1 are any realization of the random variables A and B(1)

respectively.

This means that depending on the state it is known which type of
transition to take and almost each of them has infinitely many
possibilities.

7 / 15



Single queue

Let Zj = (Z1,j , Z̄0,j , Z̄1,j) be the state after j transitions
Z0 = (1, 0, 0), Zj+1 = Zj + VZ (Zj).

VZ (z) =


{(1,−z̄0 + a,−z̄0) : a ≥ 0} if arrival

{(−1,−z̄1,−z̄1 + 1{z1 > 1}b1) : b1 ≥ 0} if service

{(0, a, b1) : a, b1 ≥ 0} if start,

where a, b1 are any realization of the random variables A and B(1)

respectively.

This means that depending on the state it is known which type of
transition to take and almost each of them has infinitely many
possibilities.

7 / 15



Single queue

Let Xj =
Zj

N be the scaled state of the system.

Xj+1 = Xj +
1

N
VX (Xj),

VX (x) =


{(1,−x̄0N + a,−x̄0N) : a ≥ 0} if x̄0 < x̄1

{(−1,−x̄1N,−x̄1N + b11{x1 >
1
N
}) : b1 ≥ 0} if x̄0 ≥ x̄1

{(0, a, b1) : a, b1 ≥ 0} if x = X0,

where a, b1 are any realization of the random variables A and B(1)

respectively.

8 / 15



Single queue

Let Xj =
Zj

N be the scaled state of the system.

Xj+1 = Xj +
1

N
VX (Xj),

VX (x) =


{(1,−x̄0N + a,−x̄0N) : a ≥ 0} if arrival

{(−1,−x̄1N,−x̄1N + b11{x1 >
1
N
}) : b1 ≥ 0} if service

{(0, a, b1) : a, b1 ≥ 0} if start,

where a, b1 are any realization of the random variables A and B(1)

respectively.

8 / 15



Single queue

How to choose the importance function?

• Using subsolutions:
• Find a function W (x) by solving E

[
e−〈DW (x),VX (x)〉] ≤ 1

• Use boundary conditions: W (X0) = γ(0), W (XτN ) = 0.
• The result is

W (x) = (1− x1)γ(0)− (x̄1 − x̄0)θ∗

• Intuitively, W (x) approximates the decay rate when starting at
some point x.

• Importance function U(x) = min{W (0),W (0)−W (x)}
• The use of the (negative) decay rate −γ(x), starting at some

general point x .

• Then U(x) = min{γ(0), γ(0)− γ(x)} = γ(0)− γ(x).

9 / 15



Single queue

How to choose the importance function?

• Using subsolutions:

• Find a function W (x) by solving E
[
e−〈DW (x),VX (x)〉] ≤ 1

• Use boundary conditions: W (X0) = γ(0), W (XτN ) = 0.
• The result is

W (x) = (1− x1)γ(0)− (x̄1 − x̄0)θ∗

• Intuitively, W (x) approximates the decay rate when starting at
some point x.

• Importance function U(x) = min{W (0),W (0)−W (x)}
• The use of the (negative) decay rate −γ(x), starting at some

general point x .

• Then U(x) = min{γ(0), γ(0)− γ(x)} = γ(0)− γ(x).

9 / 15



Single queue

How to choose the importance function?

• Using subsolutions:
• Find a function W (x) by solving E

[
e−〈DW (x),VX (x)〉] ≤ 1

• Use boundary conditions: W (X0) = γ(0), W (XτN ) = 0.
• The result is

W (x) = (1− x1)γ(0)− (x̄1 − x̄0)θ∗

• Intuitively, W (x) approximates the decay rate when starting at
some point x.

• Importance function U(x) = min{W (0),W (0)−W (x)}
• The use of the (negative) decay rate −γ(x), starting at some

general point x .

• Then U(x) = min{γ(0), γ(0)− γ(x)} = γ(0)− γ(x).

9 / 15



Single queue

How to choose the importance function?

• Using subsolutions:
• Find a function W (x) by solving E

[
e−〈DW (x),VX (x)〉] ≤ 1

• Use boundary conditions: W (X0) = γ(0), W (XτN ) = 0.

• The result is

W (x) = (1− x1)γ(0)− (x̄1 − x̄0)θ∗

• Intuitively, W (x) approximates the decay rate when starting at
some point x.

• Importance function U(x) = min{W (0),W (0)−W (x)}
• The use of the (negative) decay rate −γ(x), starting at some

general point x .

• Then U(x) = min{γ(0), γ(0)− γ(x)} = γ(0)− γ(x).

9 / 15



Single queue

How to choose the importance function?

• Using subsolutions:
• Find a function W (x) by solving E

[
e−〈DW (x),VX (x)〉] ≤ 1

• Use boundary conditions: W (X0) = γ(0), W (XτN ) = 0.
• The result is

W (x) = (1− x1)γ(0)− (x̄1 − x̄0)θ∗

• Intuitively, W (x) approximates the decay rate when starting at
some point x.

• Importance function U(x) = min{W (0),W (0)−W (x)}
• The use of the (negative) decay rate −γ(x), starting at some

general point x .

• Then U(x) = min{γ(0), γ(0)− γ(x)} = γ(0)− γ(x).

9 / 15



Single queue

How to choose the importance function?

• Using subsolutions:
• Find a function W (x) by solving E

[
e−〈DW (x),VX (x)〉] ≤ 1

• Use boundary conditions: W (X0) = γ(0), W (XτN ) = 0.
• The result is

W (x) = (1− x1)γ(0)− (x̄1 − x̄0)θ∗

• Intuitively, W (x) approximates the decay rate when starting at
some point x.

• Importance function U(x) = min{W (0),W (0)−W (x)}
• The use of the (negative) decay rate −γ(x), starting at some

general point x .

• Then U(x) = min{γ(0), γ(0)− γ(x)} = γ(0)− γ(x).

9 / 15



Single queue

How to choose the importance function?

• Using subsolutions:
• Find a function W (x) by solving E

[
e−〈DW (x),VX (x)〉] ≤ 1

• Use boundary conditions: W (X0) = γ(0), W (XτN ) = 0.
• The result is

W (x) = (1− x1)γ(0)− (x̄1 − x̄0)θ∗

• Intuitively, W (x) approximates the decay rate when starting at
some point x.

• Importance function U(x) = min{W (0),W (0)−W (x)}

• The use of the (negative) decay rate −γ(x), starting at some
general point x .

• Then U(x) = min{γ(0), γ(0)− γ(x)} = γ(0)− γ(x).

9 / 15



Single queue

How to choose the importance function?

• Using subsolutions:
• Find a function W (x) by solving E

[
e−〈DW (x),VX (x)〉] ≤ 1

• Use boundary conditions: W (X0) = γ(0), W (XτN ) = 0.
• The result is

W (x) = (1− x1)γ(0)− (x̄1 − x̄0)θ∗

• Intuitively, W (x) approximates the decay rate when starting at
some point x.

• Importance function U(x) = min{W (0),W (0)−W (x)}
• The use of the (negative) decay rate −γ(x), starting at some

general point x .

• Then U(x) = min{γ(0), γ(0)− γ(x)} = γ(0)− γ(x).

9 / 15



Single queue

How to choose the importance function?

• Using subsolutions:
• Find a function W (x) by solving E

[
e−〈DW (x),VX (x)〉] ≤ 1

• Use boundary conditions: W (X0) = γ(0), W (XτN ) = 0.
• The result is

W (x) = (1− x1)γ(0)− (x̄1 − x̄0)θ∗

• Intuitively, W (x) approximates the decay rate when starting at
some point x.

• Importance function U(x) = min{W (0),W (0)−W (x)}
• The use of the (negative) decay rate −γ(x), starting at some

general point x .

• Then U(x) = min{γ(0), γ(0)− γ(x)} = γ(0)− γ(x).

9 / 15



The (negative) decay rate

− γ(x) = lim
N→∞

1

N
log P(KN(xN) < K0(xN))

=


0 if x̄1 − x̄0 ≥ (1− x1)E [A] ,

(1− x1)ΛA(−θ) + (x̄1 − x̄0)θ if x̄1 − x̄0 = (1− x1)Eθ [A] for some θ ∈ (0, θ∗),

(1− x1)ΛA(−θ∗) + (x̄1 − x̄0)θ∗ if − x1Eθ
∗

[B] ≤ x̄1 − x̄0 ≤ (1− x1)Eθ∗ [A] ,

ΛA(−θ∗) + x1ΛB(θ) + (x̄1 − x̄0)θ if x̄1 − x̄0 = −x1Eθ [B] for some θ > θ∗,

x̄1 − x̄0

x1

1

Eθ∗ [A] E [A]−Eθ∗ [B]

IV III’ III II I

10 / 15



The (negative) decay rate

− γ(x) = lim
N→∞

1

N
log P(KN(xN) < K0(xN))

=


0 if x̄1 − x̄0 ≥ (1− x1)E [A] ,

(1− x1)ΛA(−θ) + (x̄1 − x̄0)θ if x̄1 − x̄0 = (1− x1)Eθ [A] for some θ ∈ (0, θ∗),

(1− x1)ΛA(−θ∗) + (x̄1 − x̄0)θ∗ if − x1Eθ
∗

[B] ≤ x̄1 − x̄0 ≤ (1− x1)Eθ∗ [A] ,

ΛA(−θ∗) + x1ΛB(θ) + (x̄1 − x̄0)θ if x̄1 − x̄0 = −x1Eθ [B] for some θ > θ∗,

x̄1 − x̄0

x1

1

Eθ∗ [A] E [A]−Eθ∗ [B]

IV III’ III II I

10 / 15



The (negative) decay rate

− γ(x) = lim
N→∞

1

N
log P(KN(xN) < K0(xN))

=


0 if x̄1 − x̄0 ≥ (1− x1)E [A] ,

(1− x1)ΛA(−θ) + (x̄1 − x̄0)θ if x̄1 − x̄0 = (1− x1)Eθ [A] for some θ ∈ (0, θ∗),

(1− x1)ΛA(−θ∗) + (x̄1 − x̄0)θ∗ if − x1Eθ
∗

[B] ≤ x̄1 − x̄0 ≤ (1− x1)Eθ∗ [A] ,

ΛA(−θ∗) + x1ΛB(θ) + (x̄1 − x̄0)θ if x̄1 − x̄0 = −x1Eθ [B] for some θ > θ∗,

x̄1 − x̄0

x1

ArrivalDeparture 1

Eθ∗ [A] E [A]−Eθ∗ [B]

IV III’ III II I

10 / 15



The (negative) decay rate

− γ(x) = lim
N→∞

1

N
log P(KN(xN) < K0(xN))

=


0 if x̄1 − x̄0 ≥ (1− x1)E [A] ,

(1− x1)ΛA(−θ) + (x̄1 − x̄0)θ if x̄1 − x̄0 = (1− x1)Eθ [A] for some θ ∈ (0, θ∗),

(1− x1)ΛA(−θ∗) + (x̄1 − x̄0)θ∗ if − x1Eθ
∗

[B] ≤ x̄1 − x̄0 ≤ (1− x1)Eθ∗ [A] ,

ΛA(−θ∗) + x1ΛB(θ) + (x̄1 − x̄0)θ if x̄1 − x̄0 = −x1Eθ [B] for some θ > θ∗,

x̄1 − x̄0

x1

ArrivalDeparture 1

Eθ∗ [A] E [A]−Eθ∗ [B]

IV III’ III II Cheap

10 / 15



The (negative) decay rate

− γ(x) = lim
N→∞

1

N
log P(KN(xN) < K0(xN))

=


0 if x̄1 − x̄0 ≥ (1− x1)E [A] ,

(1− x1)ΛA(−θ) + (x̄1 − x̄0)θ if x̄1 − x̄0 = (1− x1)Eθ [A] for some θ ∈ (0, θ∗),

(1− x1)ΛA(−θ∗) + (x̄1 − x̄0)θ∗ if − x1Eθ
∗

[B] ≤ x̄1 − x̄0 ≤ (1− x1)Eθ∗ [A] ,

ΛA(−θ∗) + x1ΛB(θ) + (x̄1 − x̄0)θ if x̄1 − x̄0 = −x1Eθ [B] for some θ > θ∗,

x̄1 − x̄0

x1

ArrivalDeparture 1

Eθ∗ [A] E [A]−Eθ∗ [B]

Expensive III’ III II Cheap

10 / 15



The (negative) decay rate - sketch of the proof

Sketch of the proof for the upper bound:

P (KN(xN) < K0(xN)) = Eθ,θ̃
[
Lθ,θ̃ | KN(xN) < K0(xN)

]
Pθ,θ̃ (KN(xN) < K0(xN))

Sketch of the proof for the lower bound:

• Similar proof as Sadowsky 1991 when x̄0 = x̄1.

• Lower bound probability by the product of the probability to
end up in a state where x̄0 = x̄1 and the probability to reach
the overflow level starting from this new state.

11 / 15



The (negative) decay rate - sketch of the proof

Sketch of the proof for the upper bound:

P (KN(xN) < K0(xN)) = Eθ,θ̃
[
Lθ,θ̃ | KN(xN) < K0(xN)

]
Pθ,θ̃ (KN(xN) < K0(xN))

Sketch of the proof for the lower bound:

• Similar proof as Sadowsky 1991 when x̄0 = x̄1.

• Lower bound probability by the product of the probability to
end up in a state where x̄0 = x̄1 and the probability to reach
the overflow level starting from this new state.

11 / 15



Proof of asymptotic efficiency

Need to show:

lim sup
N→∞

1

N
log
(
w(N)R−2JNE

[
T 2
])
≤ −2γ(0),

where T is the number of particles that reach the overflow level,
w(N) is the expected computational effort.

Prove that

• lim supN→∞
1
N logE

[
T 2
]
≤ 0

• lim supN→∞
1
N logw(N) ≤ 0

• The result follows.

12 / 15



Proof of asymptotic efficiency

Need to show:

lim sup
N→∞

1

N
log
(
w(N)R−2JNE

[
T 2
])
≤ −2γ(0),

where T is the number of particles that reach the overflow level,
w(N) is the expected computational effort.

Prove that

• lim supN→∞
1
N logE

[
T 2
]
≤ 0

• lim supN→∞
1
N logw(N) ≤ 0

• The result follows.

12 / 15



Proof of asymptotic efficiency

Need to show:

lim sup
N→∞

1

N
log
(
w(N)R−2JNE

[
T 2
])
≤ −2γ(0),

where T is the number of particles that reach the overflow level,
w(N) is the expected computational effort.

Prove that

• lim supN→∞
1
N logE

[
T 2
]
≤ 0

• lim supN→∞
1
N logw(N) ≤ 0

• The result follows.

12 / 15



Proof of asymptotic efficiency

Need to show:

lim sup
N→∞

1

N
log
(
w(N)R−2JNE

[
T 2
])
≤ −2γ(0),

where T is the number of particles that reach the overflow level,
w(N) is the expected computational effort.

Prove that

• lim supN→∞
1
N logE

[
T 2
]
≤ 0

• lim supN→∞
1
N logw(N) ≤ 0

• The result follows.

12 / 15



Extension to d-node tandem queue

• State space now has 2d + 1 dimensions.

• For d > 1 we can show a (non-trivial) upper and lower bound
on −γ(x).
• The lower bound follows by using the result for the single

queue.
• The upper bound uses the sojourn time and stopping times.

• Use W (x) = minj=1,...,d (−(x1 + . . .+ xj)γ(0) + (x̄0 − x̄j)θ
∗ + γ(0)).

• Proofs for asymptotic efficiency are extendable to d-nodes.

13 / 15



Extension to d-node tandem queue

• State space now has 2d + 1 dimensions.
• For d > 1 we can show a (non-trivial) upper and lower bound

on −γ(x).

• The lower bound follows by using the result for the single
queue.

• The upper bound uses the sojourn time and stopping times.

• Use W (x) = minj=1,...,d (−(x1 + . . .+ xj)γ(0) + (x̄0 − x̄j)θ
∗ + γ(0)).

• Proofs for asymptotic efficiency are extendable to d-nodes.

13 / 15



Extension to d-node tandem queue

• State space now has 2d + 1 dimensions.
• For d > 1 we can show a (non-trivial) upper and lower bound

on −γ(x).
• The lower bound follows by using the result for the single

queue.
• The upper bound uses the sojourn time and stopping times.

• Use W (x) = minj=1,...,d (−(x1 + . . .+ xj)γ(0) + (x̄0 − x̄j)θ
∗ + γ(0)).

• Proofs for asymptotic efficiency are extendable to d-nodes.

13 / 15



Extension to d-node tandem queue

• State space now has 2d + 1 dimensions.
• For d > 1 we can show a (non-trivial) upper and lower bound

on −γ(x).
• The lower bound follows by using the result for the single

queue.
• The upper bound uses the sojourn time and stopping times.

• Use W (x) = minj=1,...,d (−(x1 + . . .+ xj)γ(0) + (x̄0 − x̄j)θ
∗ + γ(0)).

• Proofs for asymptotic efficiency are extendable to d-nodes.

13 / 15



Extension to d-node tandem queue

• State space now has 2d + 1 dimensions.
• For d > 1 we can show a (non-trivial) upper and lower bound

on −γ(x).
• The lower bound follows by using the result for the single

queue.
• The upper bound uses the sojourn time and stopping times.

• Use W (x) = minj=1,...,d (−(x1 + . . .+ xj)γ(0) + (x̄0 − x̄j)θ
∗ + γ(0)).

• Proofs for asymptotic efficiency are extendable to d-nodes.

13 / 15



Concluding remarks

• For d = 1 we can show that two splitting schemes are
asymptotically efficient; one based on subsolutions and one
based on the decay rate.

• For d > 1 we need a splitting scheme based on subsolutions
(which we might be able to extend to the decay rate as well).

• Seems likely that these splitting schemes also work well for
restart.

Thank you for your attention!

14 / 15



Concluding remarks

• For d = 1 we can show that two splitting schemes are
asymptotically efficient; one based on subsolutions and one
based on the decay rate.

• For d > 1 we need a splitting scheme based on subsolutions
(which we might be able to extend to the decay rate as well).

• Seems likely that these splitting schemes also work well for
restart.

Thank you for your attention!

14 / 15



Concluding remarks

• For d = 1 we can show that two splitting schemes are
asymptotically efficient; one based on subsolutions and one
based on the decay rate.

• For d > 1 we need a splitting scheme based on subsolutions
(which we might be able to extend to the decay rate as well).

• Seems likely that these splitting schemes also work well for
restart.

Thank you for your attention!

14 / 15



Concluding remarks

• For d = 1 we can show that two splitting schemes are
asymptotically efficient; one based on subsolutions and one
based on the decay rate.

• For d > 1 we need a splitting scheme based on subsolutions
(which we might be able to extend to the decay rate as well).

• Seems likely that these splitting schemes also work well for
restart.

Thank you for your attention!

14 / 15



Concluding remarks

• For d = 1 we can show that two splitting schemes are
asymptotically efficient; one based on subsolutions and one
based on the decay rate.

• For d > 1 we need a splitting scheme based on subsolutions
(which we might be able to extend to the decay rate as well).

• Seems likely that these splitting schemes also work well for
restart.

Thank you for your attention!

14 / 15



Splitting for a non-Markovian tandem queue

Anne Buijsrogge Pieter-Tjerk de Boer Werner Scheinhardt

a.buijsrogge@tudelft.nl

May 18, 2021


