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Introduction

Ak _— BI(<1) Ce —_— Blgd)

® d queues in tandem

Aj - inter-arrival time of customer k + 1

° B,EJ) - service time of customer k in queue j

Interested in the probability that the total number of
customers reaches N before the system is empty again = py

For large N, this is a rare event when the system is stable.
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Introduction - Splitting
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Figure: An example of splitting: a possible realization of particles and
splitting thresholds. In this example, py = 3.
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Introduction

® We want the estimator of py to be asymptotically efficient.

® This means that the relative error grows less than
exponentially fast in N and that the computational effort
grows less than exponentially fast in N.
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Introduction

For the same model, importance sampling has been shown to be
asymptotically efficient under some conditions.

For splitting, similar conditions turn out not to be necessary.
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State space

Let Z; = (Z1, .-, 24, Zoyj, - - -+ Zdj) be the state after j
transitions.

® Z;jis the number of customers at queue /
® 7y is the residual inter-arrival time

® Z;j is the residual service time at queue i

We start with a busy cycle, i.e. Zo =(1,0,...,0,0,...,0)
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Single queue
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Single queue

Let Z; = (Z1, 20, Z1 ) be the state after j transitions
Zo = (1,0,0), Zjs1 = Z; + V2(Z)).

{(1, —Zn + a, —20) ra> 0} if 2o < 71
Vz(Z) = {(—1, —z1,—21 + Il{zl > l}bl) by > 0} if zo > 71
{(0,a,b1) : a,by > 0} if z=2Z,,

where a, by are any realization of the random variables A and B(!)
respectively.
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Single queue

Let Z; = (Z1, 20, Z1 ) be the state after j transitions
Zo = (1,0,0), Zj41 = Z; + Vz(Z)).

{(1,~20+a,—2):a>0} if arrival
Vz(z) = {(—1, 7,2z + 1{z1 > 1}by) : by > 0} if service
{(0,a,b1) : a,b; > 0} if start,

where a, by are any realization of the random variables A and B(!)
respectively.

This means that depending on the state it is known which type of
transition to take and almost each of them has infinitely many
possibilities.
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Single queue

Let X; = %,L be the scaled state of the system.

1
X1 = X; + NVX(XJ'),

{(1,7)_(0/\/4»3, 7)_(0/\/) : 220} if X0 < x1
Vx(X) = {(71, - N, =31 N + bl]].{Xl > %}) c by > 0} if X0 > x
{(0, a, bl) . a, b > 0} ifXZXO,

where a, by are any realization of the random variables A and B(1)
respectively.
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Single queue

Let X; = %,L be the scaled state of the system.

1
X1 = X; + NVX(XJ'),

{(1, %N +a,—xN):a>0} if arrival
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where a, by are any realization of the random variables A and B(1)
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Single queue

How to choose the importance function?
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Single queue
How to choose the importance function?

e Using subsolutions:
* Find a function W(x) by solving E [e~(PW():Vx(x)] < 1
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Single queue
How to choose the importance function?

e Using subsolutions:
* Find a function W(x) by solving E [e~(PW():Vx(x)] < 1
¢ Use boundary conditions: W(Xo) = ~(0), W(X,) = 0.
® The result is

W(x) = (1 —>x)v(0) — (31 — %0)6"

® Intuitively, W(x) approximates the decay rate when starting at
some point x.
® Importance function U(x) = min{ W(0), W(0) — W(x)}
® The use of the (negative) decay rate —y(x), starting at some
general point x .

® Then U(x) = min{(0),7(0) —v(x)} = 7(0) — 7(x).

"I"U Delft 9/15



The (negative) decay rate

0 = Jim o8 B(Kn(xn) < Ko(xn))

0 if 51— % > (1—x)E[A],

(1 —x1)Aa(—0) + (31 — %0)0 if X1 — %o = (1 — x1)E? [A] for some 6 € (0, 0*),
(1 = x))AA(=0%) + (&1 — %0)0*  if —xiB9" [B] <51 — % < (1 —x1)E®" [A],
AA(—G*) =+ XIAB(O) + ()_(1 — )_(0)9 ifx1 — X = —X1]E9 [B] for some 0 > 6*,
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0
(1 — Xl)/\A(—G) + ()_(1 — )?0)0
(1 — X1)AA(—9*) + ()_<1 — )?0)9*

The (negative) decay rate
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The (negative) decay rate - sketch of the proof

Sketch of the proof for the upper bound:

P (Kn(xn) < Kolxn)) = E? [L2F | Kn(xw) < Kolxn)| 7 (Kn(xn) < Kolxn)
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The (negative) decay rate - sketch of the proof

Sketch of the proof for the upper bound:

P (Kn(xn) < Kolxn)) = E? [L2F | Kn(xw) < Kolxn)| 7 (Kn(xn) < Kolxn)

Sketch of the proof for the lower bound:
e Similar proof as Sadowsky 1991 when Xy = Xi.

® Lower bound probability by the product of the probability to
end up in a state where Xy = X1 and the probability to reach
the overflow level starting from this new state.
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Proof of asymptotic efficiency

Need to show:

: 1 .
I|Ar;n::opﬁ log (W(N)R ZvE [T2]> < —2v(0),

where T is the number of particles that reach the overflow level,
w(N) is the expected computational effort.
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Proof of asymptotic efficiency

Need to show:
1
limsup — log (w(N)R™2WE [T2]) < —2+(0),
msup 1 log (w(N) [T2]) < -21(0)

where T is the number of particles that reach the overflow level,
w(N) is the expected computational effort.

Prove that
® limsupp_, o0 % log E [Tz] <0
* limsupy_ 4 log w(N) <0
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Proof of asymptotic efficiency

Need to show:

: 1 .
I|Arln::OpN log (W(N)R ZvE [T2]> < —2v(0),

where T is the number of particles that reach the overflow level,
w(N) is the expected computational effort.

Prove that
® limsupp_, o0 % log E [Tz] <0
* limsupy_ 4 log w(N) <0
® The result follows.
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Extension to d-node tandem queue

® State space now has 2d + 1 dimensions.
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Extension to d-node tandem queue

® State space now has 2d + 1 dimensions.
® For d > 1 we can show a (non-trivial) upper and lower bound
on —v(x).
® The lower bound follows by using the result for the single
queue.
® The upper bound uses the sojourn time and stopping times.
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Extension to d-node tandem queue

® State space now has 2d + 1 dimensions.
® For d > 1 we can show a (non-trivial) upper and lower bound
on —v(x).
® The lower bound follows by using the result for the single
queue.
® The upper bound uses the sojourn time and stopping times.

¢ Use W(x) =minj1, o (=(a + ... +x)7(0) + (%0 — %)0 + 7(0)).
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Extension to d-node tandem queue

State space now has 2d + 1 dimensions.

® For d > 1 we can show a (non-trivial) upper and lower bound
on —v(x).
® The lower bound follows by using the result for the single
queue.

® The upper bound uses the sojourn time and stopping times.
¢ Use W(x) = minj—1,_.a (—=(a + ... +)7(0) + (% — %)0" +7(0)).
Proofs for asymptotic efficiency are extendable to d-nodes.
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Concluding remarks
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Concluding remarks

® For d =1 we can show that two splitting schemes are
asymptotically efficient; one based on subsolutions and one
based on the decay rate.
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® For d =1 we can show that two splitting schemes are
asymptotically efficient; one based on subsolutions and one
based on the decay rate.

® For d > 1 we need a splitting scheme based on subsolutions
(which we might be able to extend to the decay rate as well).

® Seems likely that these splitting schemes also work well for
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Thank you for your attention!
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