A Multi-Trajectory Approach to Rare-Event Simulation

RESIM 2021, Paris

Thomas Hotz¹ and Armin Zimmermann² 1Institute for Mathematics, Probability Theory and Mathematical Statistics 2Computer Science, Systems and Software Engineering Technische Universität Ilmenau, Germany

Contents

- **Performability evaluation methods**
- T. A hybrid multi-trajectory simulation algorithm
- T. **Rare-event application Example**
- Conclusion

Performability Evaluation

- **Applicability and Efficiency of Algorithms**
	- ▶ Two dimensions of (Markovian) problems

rarity of measure samples

Evaluation Methods

Method 1: Numerical Analysis

- ▶ Based on full state space
- \blacktriangleright \blacktriangleright Derive and solve equations covering stochastic process $\boldsymbol{\mathrm{X}}_{\text{n}}$
- \blacktriangleright Example: DTMC $p_{ij} = P(X_n = j | X_{n-1} = i)$

Evaluation Methods

Method 2: Simulation

- ▶ Visit states sequentially
- \blacktriangleright Choose next possible state randomly
- \blacktriangleright Collect samples on the fly
- \blacktriangleright Derive stochastic estimator (mean, variance)

Hybrid Multi-Trajectory Simulation

An Integrated Algorithm

- Keep advantages of simulation *and* numerical analysis
- Work like numerical analysis, as long as memory suffices
	- **"split" particle step** following all possible state changes
	- distribute state probability over destination states
- ▶ Select state transition like simulation if not
	- **probabilistic step** of trajectory
	- merge trajectories leading to stored state (add p_i s)
	- … other heuristics are possible (adaptive number of particles..)
- ▶ Sum of state (particle) probabilities will always be 1
	- \blacksquare p_i equals probability that a trajectory would have arrived at state i under the previous decisions

Hybrid Multi-Trajectory Simulation

General Idea

- ▶ Keep as many states as possible
- **Mix simulation and numerical analysis steps**
- \blacktriangleright Treat continuous-time models via DTMC embedding

Hybrid Multi-Trajectory Simulation

Proofs in Previous Papers

- **L** Unbiasedness
- (Almost sure) convergence, at least as fast as simulation
- ▶ Based on a **unified vector-matrix framework** treating numerical analysis, simulation, and multi-trajectory in the same way

Contains Standard Methods as Special Cases

- \triangleright Numerical analysis: $\lvert \text{Particles} \rvert \geq \lvert \text{ReachableStates} \rvert$
- Simulation: $\text{Particles} \rvert = 1$

Application Example

Tandem Queue Model

- ▶ Stochastic Petri net, customer losses (no blocking)
- ▶ Service rate 2 > service rate 1 > arrival rate

▶ Probability of #customers > n in 2nd queue: rare event

Application Example

Tandem Queue Model

▶ Results

averaged over several runs, with 95% conf. interval / 5% relative error

Accuracy, computation time and memory consumption

Conclusion

Multi-Trajectory Simulation

- A hybrid performability evaluation algorithm integrating elements of numerical analysis and simulation
	- Mathematical framework proposed
	- \mathbf{r} Efficient compared to standard methods, useful for rare-event problems
	- П Extension of splitting methods
- **Prototype tool implementation in TimeNET**
- ▶ Future work
	- Heuristics for rare-event problems with large state space
	- **Extension to non-Markovian models**

Further Information

Tool

http://timenet.tu-ilmenau.de/

Background and Details

 A. Zimmermann and T. Hotz: *Integrating simulation and numerical analysis in the evaluation of generalized stochastic Petri nets*, ACM TOMACS 29(4) 2019.

Application

 A. Zimmermann, T. Hotz, V. Hädicke, and M. Friebe: *Analysis of safety-critical cloud architectures with multitrajectory simulation*, accepted for publication at RAMS 2022.

Algorithm

repeat ($*$ main simulation loop $*$) while $|Particles| > 0$ do Select any $p \in Particles$; Particles := Particles $\{p\}$ $w := p$, weight; $m := p$, marking \mathcal{T}_{ena} := set of all transitions enabled in marking m

> $(*$ rate reward and sojourn time $*)$ $WeightSum := \sum_{tr \in \mathcal{T}_{ena}} \lambda(tr)$ $Reward += \frac{w}{WeightSum} RateReward^{var}(m)$ $SimTime + = \frac{w}{WeibtSum}$

(* decision heuristic, here: only split if enough space *) if $|Particles| + |Particles'| + |T_{ena}| > N$ then $(*$ don't split $*)$ Select any $tr \in \mathcal{T}_{ena}$ randomly $\mathcal{T}_{ena} := \{tr\}$: $WeightSum := \lambda(tr)$

 $(*$ fire transition(s) $*)$ for $\forall tr \in \mathcal{T}_{ena}$ do $m' := FireTransaction(m, tr)$ if $m' \notin Particles'$ then (* add new particle *) $Particles' := Particles' \cup \{(m', 0)\}\$ $(*$ merge particle weight $*)$ $Particles'(m')$. weight $+=\frac{w}{WeightSum}\lambda(tr)$ $(*)$ impulse reward for fired transition $*)$ $Reward \mathrel{+}= \frac{w}{Weibh5um} ImpulseReward^{rvar}(m, tr)$

 $(*$ full particle set finished $*)$ $Particles := Particles'$; $Particles' := \{\}$ Collect measure sample with value $\frac{Reward}{SimTime}$