A Multi-Trajectory Approach to Rare-Event Simulation

RESIM 2021, Paris

Thomas Hotz¹ and <u>Armin Zimmermann</u>² ¹Institute for Mathematics, Probability Theory and Mathematical Statistics ²Computer Science, Systems and Software Engineering Technische Universität Ilmenau, Germany

Contents

- Performability evaluation methods
- A hybrid multi-trajectory simulation algorithm
- Rare-event application Example
- Conclusion

Performability Evaluation

Applicability and Efficiency of Algorithms

Two dimensions of (Markovian) problems

rarity of measure samples

Evaluation Methods

Method 1: Numerical Analysis

- Based on full state space
- Derive and solve equations covering stochastic process X_n
- ► Example: DTMC $p_{ij} = P(X_n = j | X_{n-1} = i)$

Evaluation Methods

Method 2: Simulation

- Visit states sequentially
- Choose next possible state randomly
- Collect samples on the fly
- Derive stochastic estimator (mean, variance)

Hybrid Multi-Trajectory Simulation

• An Integrated Algorithm

- Keep advantages of simulation and numerical analysis
- Work like numerical analysis, as long as memory suffices
 - "split" particle step following all possible state changes
 - distribute state probability over destination states
- Select state transition like simulation if not
 - probabilistic step of trajectory
 - merge trajectories leading to stored state (add p_is)
 - ... other heuristics are possible (adaptive number of particles..)
- Sum of state (particle) probabilities will always be 1
 - p_i equals probability that a trajectory would have arrived at state i under the previous decisions

Hybrid Multi-Trajectory Simulation

General Idea

- Keep as many states as possible
- Mix simulation and numerical analysis steps
- Treat continuous-time models via DTMC embedding

Hybrid Multi-Trajectory Simulation

Proofs in Previous Papers

- Unbiasedness
- (Almost sure) convergence, at least as fast as simulation
- Based on a unified vector-matrix framework treating numerical analysis, simulation, and multi-trajectory in the same way
- Contains Standard Methods as Special Cases
 - ▶ Numerical analysis: $|Particles| \ge |ReachableStates|$
 - Simulation: |Particles| = 1

Application Example

Tandem Queue Model

- Stochastic Petri net, customer losses (no blocking)
- Service rate 2 > service rate 1 > arrival rate

Probability of #customers > n in 2nd queue: rare event

Application Example

Tandem Queue Model

Results

averaged over several runs, with 95% conf. interval / 5% relative error

Arrival	Numeric analysis			Simulation			Adaptive Multi-Traj.		
Delay	Result	Time	Mem.	Error	Time	Mem.	Error	Time	Mem.
1.0	1.149E-3	0.1	128	1.9%	1.2	28	0.6%	0.9	241
1.5	1.143E-4	0.1	128	1.8%	6.9	30	0.7%	0.8	240
2.0	1.378E-5	0.1	128	0.2%	35.9	76	0.8%	0.8	241
2.5	2.442E-6	0.1	128	0.3%	203.4	66	0.6%	0.8	240
3.0	5.804E-7	0.1	128	0.9%	767.5	66	0.9%	0.8	240
3.5	1.708E-7	0.1	128	1.7%	2239.4	80	0.8%	0.8	240
4.0	5.902E-8	0.1	128	4.4%	4 4 7 6.3	56	0.9%	0.8	241
4.5	2.308E-8	0.1	128				0.5%	0.7	244
5.0	9.953E-9	0.1	128				0.5%	0.7	244

Accuracy, computation time and memory consumption

Conclusion

Multi-Trajectory Simulation

- A hybrid performability evaluation algorithm integrating elements of numerical analysis and simulation
 - Mathematical framework proposed
 - Efficient compared to standard methods, useful for rare-event problems
 - Extension of splitting methods
- Prototype tool implementation in TimeNET
- Future work
 - Heuristics for rare-event problems with large state space
 - Extension to non-Markovian models

Further Information

Tool

http://timenet.tu-ilmenau.de/

Background and Details

A. Zimmermann and T. Hotz: Integrating simulation and numerical analysis in the evaluation of generalized stochastic Petri nets, ACM TOMACS 29(4) 2019.

Application

A. Zimmermann, T. Hotz, V. Hädicke, and M. Friebe: Analysis of safety-critical cloud architectures with multitrajectory simulation, accepted for publication at RAMS 2022.

Algorithm

 $\begin{aligned} & \text{repeat } (* \text{ main simulation loop } *) \\ & \text{while } |Particles| > 0 \text{ do} \\ & \text{Select any } p \in Particles ; Particles := Particles \setminus \{p\} \\ & w := p.weight ; m := p.marking \\ & \mathcal{T}_{ena} := \text{set of all transitions enabled in marking } m \end{aligned}$

(* rate reward and sojourn time *) $WeightSum := \sum_{tr \in \mathcal{T}_{ena}} \lambda(tr)$ $Reward += \frac{w}{WeightSum} RateReward^{rvar}(m)$ $SimTime += \frac{w}{WeightSum}$

(* decision heuristic, here: only split if enough space *) if $|Particles| + |Particles'| + |\mathcal{T}_{ena}| > N$ then (* don't split *) Select any $tr \in \mathcal{T}_{ena}$ randomly $\mathcal{T}_{ena} := \{tr\}$; WeightSum := $\lambda(tr)$

(* fire transition(s) *) for $\forall tr \in \mathcal{T}_{ena}$ do m' := FireTransition(m, tr)if $m' \notin Particles'$ then (* add new particle *) $Particles' := Particles' \cup \{(m', 0)\}$ (* merge particle weight *) $Particles'(m').weight += \frac{w}{WeightSum}\lambda(tr)$ (* impulse reward for fired transition *) $Reward += \frac{w}{WeightSum}ImpulseReward^{rvar}(m, tr)$

(* full particle set finished *) $Particles := Particles' ; Particles' := \{\}$ Collect measure sample with value $\frac{Reward}{SimTime}$