> Semi-parametric Estimation of Multivariate Extreme Expectiles

Elena Di Bernardino

Laboratoire J.A. Dieudonné, Université Côte d'Azur

Joint work with Nicholas Beck (HEC Montréal) and Mélina Mailhot (Concordia University, Montréal)

RESIM 2021 : 13th International Workshop on Rare-Event Simulation May 18th, 2021

K ロ ▶ K @ ▶ K ミ ▶ K ミ ▶ 그림 놀

- ² [Multivariate Extreme Expectiles \(MEE\)](#page-23-0)
- ³ [Optimization problem for MEE](#page-27-0)
- ⁴ [Consistency for Approximated Optimization Problem](#page-35-0)
- ⁵ [Numerical study](#page-44-0)

⁶ [Discussion](#page-48-0)

[Multivariate Extreme Expectiles \(MEE\)](#page-23-0) [Optimization problem for MEE](#page-27-0) [Consistency for Approximated Optimization Problem](#page-35-0) [Numerical study](#page-44-0) [Discussion](#page-48-0)

Risk measures : crucial tool in a multitude of fields relating to mathematics and statistics, constantly evolving.

-
-
-
-

[Multivariate Extreme Expectiles \(MEE\)](#page-23-0) [Optimization problem for MEE](#page-27-0) [Consistency for Approximated Optimization Problem](#page-35-0) [Numerical study](#page-44-0) [Discussion](#page-48-0)

Risk measures : crucial tool in a multitude of fields relating to mathematics and statistics, constantly evolving.

There have been numerous developments in this field :

-
-
-
-

[Multivariate Extreme Expectiles \(MEE\)](#page-23-0) [Optimization problem for MEE](#page-27-0) [Consistency for Approximated Optimization Problem](#page-35-0) [Numerical study](#page-44-0) [Discussion](#page-48-0)

Risk measures : crucial tool in a multitude of fields relating to mathematics and statistics, constantly evolving.

There have been numerous developments in this field :

- \leftrightarrow Establishing ideal properties
-
-
-

K ロ X K @ X K 할 X K 할 X (할)

[Multivariate Extreme Expectiles \(MEE\)](#page-23-0) [Optimization problem for MEE](#page-27-0) [Consistency for Approximated Optimization Problem](#page-35-0) [Numerical study](#page-44-0) [Discussion](#page-48-0)

Risk measures : crucial tool in a multitude of fields relating to mathematics and statistics, constantly evolving.

There have been numerous developments in this field :

- \leftrightarrow Establishing ideal properties
- \leftrightarrow Extensions of univariate measures to higher dimension
-
-

K ロ ▶ K @ ▶ K 경 ▶ K 경 ▶ (평)

[Multivariate Extreme Expectiles \(MEE\)](#page-23-0) [Optimization problem for MEE](#page-27-0) [Consistency for Approximated Optimization Problem](#page-35-0) [Numerical study](#page-44-0) [Discussion](#page-48-0)

Risk measures : crucial tool in a multitude of fields relating to mathematics and statistics, constantly evolving.

There have been numerous developments in this field :

- \leftrightarrow Establishing ideal properties
- \leftrightarrow Extensions of univariate measures to higher dimension
- \leftrightarrow Development of new measures

[Multivariate Extreme Expectiles \(MEE\)](#page-23-0) [Optimization problem for MEE](#page-27-0) [Consistency for Approximated Optimization Problem](#page-35-0) [Numerical study](#page-44-0) [Discussion](#page-48-0)

Risk measures : crucial tool in a multitude of fields relating to mathematics and statistics, constantly evolving.

There have been numerous developments in this field :

- \leftrightarrow Establishing ideal properties
- \leftrightarrow Extensions of univariate measures to higher dimension
- \leftrightarrow Development of new measures
- \leftrightarrow Estimating these measures non-parametrically or semi-parametrically

K ロ X K @ X K 할 X K 할 X (할)의 할 수 있다.

[Multivariate Extreme Expectiles \(MEE\)](#page-23-0) [Optimization problem for MEE](#page-27-0) [Consistency for Approximated Optimization Problem](#page-35-0) [Numerical study](#page-44-0) [Discussion](#page-48-0)

Elicitability

Gneiting (2011) defines elicitability as the ability to express a risk measure $T_{\alpha}(X)$ in the form of an optimization problem:

$$
T_{\alpha}(X) = \operatorname*{argmin}_{x \in \mathbb{R}} \mathbb{E} \left\{ S(x, \alpha) \right\},\,
$$

for a risk level $\alpha \in (0,1)$, a random risk X, where S is the score function associated to the risk measure T_{α} .

$$
\mathrm{VaR}_\alpha(X) = \operatornamewithlimits{argmin}_{\mathsf{x} \in \mathbb{R}} \mathbb{E}\{\alpha(X-\mathsf{x})_+ + (1-\alpha)(X-\mathsf{x})_-\}
$$

$$
e_{\alpha}(X)=\underset{x\in\mathbb{R}}{\operatorname{argmin}}\,\mathbb{E}\left\{\alpha(X-x)^2_{+}+(1-\alpha)(X-x)^2_{-}\right\}.
$$

[Multivariate Extreme Expectiles \(MEE\)](#page-23-0) [Optimization problem for MEE](#page-27-0) [Consistency for Approximated Optimization Problem](#page-35-0) [Numerical study](#page-44-0) [Discussion](#page-48-0)

Elicitability

Gneiting (2011) defines elicitability as the ability to express a risk measure $T_{\alpha}(X)$ in the form of an optimization problem:

$$
T_{\alpha}(X) = \operatorname*{argmin}_{x \in \mathbb{R}} \mathbb{E} \left\{ S(x, \alpha) \right\},\,
$$

for a risk level $\alpha \in (0,1)$, a random risk X, where S is the score function associated to the risk measure T_{α} .

Two of the most well-known elicitable univariate risk measures:

Value-at-risk (VaR) VaR_α(X) = inf{x ∈ ℝ : F(x) ≥ α}
\nVaR_α(X) = argmin ℝ{α(X – x) + + (1 – α)(X – x) – }
\nwhere x₊ = max{0, x} and x_− = max{0, –x},
\nExpecteds ("expectation+quantiles")
\n
$$
e_{\alpha}(X) = argmin ℝ {α(X – x)}2 + (1 – α)(X – x)2_{−}
$$
}.

[Multivariate Extreme Expectiles \(MEE\)](#page-23-0) [Optimization problem for MEE](#page-27-0) [Consistency for Approximated Optimization Problem](#page-35-0) [Numerical study](#page-44-0) [Discussion](#page-48-0)

Elicitability

Gneiting (2011) defines elicitability as the ability to express a risk measure $T_{\alpha}(X)$ in the form of an optimization problem:

$$
T_{\alpha}(X) = \operatorname*{argmin}_{x \in \mathbb{R}} \mathbb{E} \left\{ S(x, \alpha) \right\},\,
$$

for a risk level $\alpha \in (0,1)$, a random risk X, where S is the score function associated to the risk measure T_{α} .

Two of the most well-known elicitable univariate risk measures:

Value-at-risk (VaR)
$$
VaR_{\alpha}(X) = \inf\{x \in \mathbb{R} : F(x) \ge \alpha\}
$$

\n $VaR_{\alpha}(X) = \operatorname*{argmin}_{x \in \mathbb{R}} \mathbb{E}\{\alpha(X - x) + (1 - \alpha)(X - x) - \}$
\nwhere $x_{+} = \max\{0, x\}$ and $x_{-} = \max\{0, -x\}$,
\nExpectedles ("expectation+quantiles")

$$
e_{\alpha}(X)=\operatorname*{argmin}_{x\in\mathbb{R}}\mathbb{E}\left\{\alpha(X-x)^{2}_{+}+(1-\alpha)(X-x)^{2}_{-}\right\}.
$$

[Multivariate Extreme Expectiles \(MEE\)](#page-23-0) [Optimization problem for MEE](#page-27-0) [Consistency for Approximated Optimization Problem](#page-35-0) [Numerical study](#page-44-0) [Discussion](#page-48-0)

Elicitability

Gneiting (2011) defines elicitability as the ability to express a risk measure $T_{\alpha}(X)$ in the form of an optimization problem:

$$
T_{\alpha}(X) = \operatorname*{argmin}_{x \in \mathbb{R}} \mathbb{E} \left\{ S(x, \alpha) \right\},\,
$$

for a risk level $\alpha \in (0,1)$, a random risk X, where S is the score function associated to the risk measure T_{α} .

Two of the most well-known elicitable univariate risk measures:

Value-at-risk (VaR) $VaR_{\alpha}(X) = inf\{x \in \mathbb{R} : F(x) \geq \alpha\}$

VaR<sub>$$
\alpha
$$</sub>(X) = argmin _{$x \in \mathbb{R}$} $\mathbb{E}\{\alpha(X-x)_{+} + (1-\alpha)(X-x)_{-}\}$

where $x_+ = \max\{0, x\}$ and $x_- = \max\{0, -x\}$, $Expectiles$ ("expectation+quantiles")

$$
e_{\alpha}(X)=\operatorname*{argmin}_{x\in\mathbb{R}}\mathbb{E}\left\{\alpha(X-x)^2_{+}+(1-\alpha)(X-x)^2_{-}\right\}.
$$

Expectiles are *coherent* when $\alpha > 0.5$; this is quite advantageous.

[Multivariate Extreme Expectiles \(MEE\)](#page-23-0) [Optimization problem for MEE](#page-27-0) [Consistency for Approximated Optimization Problem](#page-35-0) [Numerical study](#page-44-0) [Discussion](#page-48-0)

Expectiles

Expectiles are uniquely identified by the first-order condition,

$$
\alpha \mathbb{E}\left[\left\{X - \mathsf{e}_{\alpha}(X)\right\}_+\right] = (1-\alpha) \mathbb{E}\left[\left\{X - \mathsf{e}_{\alpha}(X)\right\}_-\right].
$$

The above equation can also be written as

$$
\frac{1-\alpha}{\alpha} = \frac{\mathbb{E}\left[\left\{X - e_{\alpha}(X)\right\}_+\right]}{\mathbb{E}\left[\left\{X - e_{\alpha}(X)\right\}_-\right]}.
$$

$$
q_{\alpha}(X) = \underset{x \in \mathbb{R}}{\operatorname{argmin}} \left(\alpha \mathbb{E} \left[\Phi_1 \{(X - x)_+\} \right] + (1 - \alpha) \mathbb{E} \left[\Phi_2 \{(X - x)_-\} \right] \right),
$$

 $\begin{array}{c} 4 \ \square \ \rightarrow \ \ 4 \ \overline{\partial} \ \rightarrow \ \ 4 \ \overline{\equiv} \ \rightarrow \ \ 4 \ \overline{\equiv} \ \rightarrow \ \ \overline{\equiv} \ \ \overline{\equiv} \end{array}$

5 / 24

[Multivariate Extreme Expectiles \(MEE\)](#page-23-0) [Optimization problem for MEE](#page-27-0) [Consistency for Approximated Optimization Problem](#page-35-0) [Numerical study](#page-44-0) [Discussion](#page-48-0)

Expectiles

Expectiles are uniquely identified by the first-order condition,

$$
\alpha \mathbb{E}\left[\left\{X - \mathsf{e}_{\alpha}(X)\right\}_+\right] = (1-\alpha) \mathbb{E}\left[\left\{X - \mathsf{e}_{\alpha}(X)\right\}_-\right].
$$

The above equation can also be written as

$$
\frac{1-\alpha}{\alpha} = \frac{\mathbb{E}\left[\left\{X - e_{\alpha}(X)\right\}_+\right]}{\mathbb{E}\left[\left\{X - e_{\alpha}(X)\right\}_-\right]}.
$$

This makes the economic interpretation of expectiles as risk measures clearer:

Expectiles can be seen as the value of X that provides a profits/loss ratio of $\frac{1-\alpha}{\alpha}$.

$$
q_{\alpha}(X) = \underset{x \in \mathbb{R}}{\operatorname{argmin}} \left(\alpha \mathbb{E} \left[\Phi_1 \{(X - x)_+\} \right] + (1 - \alpha) \mathbb{E} \left[\Phi_2 \{(X - x)_-\} \right] \right),
$$

[Multivariate Extreme Expectiles \(MEE\)](#page-23-0) [Optimization problem for MEE](#page-27-0) [Consistency for Approximated Optimization Problem](#page-35-0) [Numerical study](#page-44-0) [Discussion](#page-48-0)

Expectiles

Expectiles are uniquely identified by the first-order condition,

$$
\alpha \mathbb{E}\left[\left\{X - \mathsf{e}_{\alpha}(X)\right\}_+\right] = (1-\alpha) \mathbb{E}\left[\left\{X - \mathsf{e}_{\alpha}(X)\right\}_-\right].
$$

The above equation can also be written as

$$
\frac{1-\alpha}{\alpha} = \frac{\mathbb{E}\left[\left\{X - e_{\alpha}(X)\right\}_+\right]}{\mathbb{E}\left[\left\{X - e_{\alpha}(X)\right\}_-\right]}.
$$

This makes the economic interpretation of expectiles as risk measures clearer:

Expectiles can be seen as the value of X that provides a profits/loss ratio of $\frac{1-\alpha}{\alpha}$.

Note that both expectiles and VaR fall into the family of generalized quantiles $(Bellini et al. 2014)$, defined by

$$
q_{\alpha}(X) = \underset{x \in \mathbb{R}}{\operatorname{argmin}} \left(\alpha \mathbb{E} \left[\Phi_1 \{(X - x)_+ \} \right] + (1 - \alpha) \mathbb{E} \left[\Phi_2 \{(X - x)_-\} \right] \right),
$$

where $\Phi_1, \Phi_2 : [0, \infty) \mapsto [0, \infty)$ are strictly increasing convex functions satisfying $\Phi_i(0) = 0$ and $\Phi_i(1) = 1$ for $i \in \{1, 2\}$. $\begin{array}{c} \left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 &$

[Multivariate Extreme Expectiles \(MEE\)](#page-23-0) [Optimization problem for MEE](#page-27-0) [Consistency for Approximated Optimization Problem](#page-35-0) [Numerical study](#page-44-0) [Discussion](#page-48-0)

Elicitability in multivariate context

Ignoring potential dependence between risks can provide inaccurate inference and induce prohibitive losses. As such, our interest lies in exploring multivariate expectiles as these dependence structures can be incorporated directly into the measure.

-
-

K ロメ K 御 X K 평 X K 평 X (唐)의

[Multivariate Extreme Expectiles \(MEE\)](#page-23-0) [Optimization problem for MEE](#page-27-0) [Consistency for Approximated Optimization Problem](#page-35-0) [Numerical study](#page-44-0) [Discussion](#page-48-0)

Elicitability in multivariate context

Ignoring potential dependence between risks can provide inaccurate inference and induce prohibitive losses. As such, our interest lies in exploring multivariate expectiles as these dependence structures can be incorporated directly into the measure.

For any d -dimensional random vector $\pmb{X} \in \mathbb{R}^d$ an associated risk measure $\pmb{\mathcal{T}}_\alpha$ is elicitable if

$$
T_{\alpha}(X) = \operatorname*{argmin}_{x \in \mathbb{R}^d} \left\{ S(x, \alpha) \right\}.
$$

-
-

K ロ ▶ K @ ▶ K ミ ▶ K ミ ▶ _ ミ | =

[Multivariate Extreme Expectiles \(MEE\)](#page-23-0) [Optimization problem for MEE](#page-27-0) [Consistency for Approximated Optimization Problem](#page-35-0) [Numerical study](#page-44-0) [Discussion](#page-48-0)

Elicitability in multivariate context

Ignoring potential dependence between risks can provide inaccurate inference and induce prohibitive losses. As such, our interest lies in exploring multivariate expectiles as these dependence structures can be incorporated directly into the measure.

For any d -dimensional random vector $\pmb{X} \in \mathbb{R}^d$ an associated risk measure $\pmb{\mathcal{T}}_\alpha$ is elicitable if

$$
T_{\alpha}(X) = \operatorname*{argmin}_{x \in \mathbb{R}^d} \left\{ S(x, \alpha) \right\}.
$$

Previous literature on Multivariate Expectiles :

- \rightarrow Multivariate geometric definition of expectiles (Herrmann et al. 2018)
- \leftrightarrow (Maume-Deschamps et al. 2017) define two notions of multivariate expectiles: L^p -expectiles and Σ -expectiles.

K ロ ▶ K @ ▶ K ミ ▶ K ミ ▶ 그림 놀

[Multivariate Extreme Expectiles \(MEE\)](#page-23-0) [Optimization problem for MEE](#page-27-0) [Consistency for Approximated Optimization Problem](#page-35-0) [Numerical study](#page-44-0) [Discussion](#page-48-0)

L^1 -expectiles

Definition $(L^1$ -expectile)

Define the L^1 -expectile of a random vector \boldsymbol{X} by

$$
\boldsymbol{e}_{\alpha}(\boldsymbol{X}) = \operatorname*{argmin}_{\mathbf{x} \in \mathbb{R}^d} \mathbb{E} \left\{\alpha \left(\sum_{i=1}^d |X_i - x_i|_+ \right)^2 + (1-\alpha) \left(\sum_{i=1}^d |X_i - x_i|_- \right)^2 \right\}.
$$

Analogously to the univariate case, the L^1 -expectile is the unique solution in \mathbb{R}^d of

$$
\frac{1-\alpha}{\alpha} = \frac{\mathbb{E}[\|(X-x)_+\|_1 \mathbb{1}\{X_k > x_k\}]}{\mathbb{E}[\|(X-x)_-\|_1 \mathbb{1}\{X_k < x_k\}]}, \quad k \in \{1,\ldots,d\}.
$$

Thus, it can be interpreted as a ratio of expected positive scenarios over negative ones.

K ロ X K @ X K 할 X K 할 X (할)

[Multivariate Extreme Expectiles \(MEE\)](#page-23-0) [Optimization problem for MEE](#page-27-0) [Consistency for Approximated Optimization Problem](#page-35-0) [Numerical study](#page-44-0) [Discussion](#page-48-0)

Our aim:

We aim to explore semi-parametric estimation of the L^1 -expectile for elevated risk levels $\alpha \approx 1$

- (i) when the underlying dependence structure and marginal distributions are unknown;
- (ii) via the approximated optimization problem

 $\arg\min\limits_{\mathbf{\Lambda}}\mathbf{\left(\Theta\right) }% \log\left(\mathbf{\Lambda}\left(\mathbf{u}\right) \right)$ Θ∈R^d

for some (asymptotic) loss function L and consistently estimated parameter set $\hat{\Lambda}$.

K ロ ▶ K @ ▶ K ミ ▶ K ミ ▶ _ ミ | =

[Multivariate Extreme Expectiles \(MEE\)](#page-23-0) [Optimization problem for MEE](#page-27-0) [Consistency for Approximated Optimization Problem](#page-35-0) [Numerical study](#page-44-0) [Discussion](#page-48-0)

Our aim:

We aim to explore semi-parametric estimation of the L^1 -expectile for elevated risk levels $\alpha \approx 1$

- (i) when the underlying dependence structure and marginal distributions are unknown;
- (ii) via the approximated optimization problem

 $\arg\min\limits_{\mathbf{\Lambda}}\mathbf{\left(\Theta\right) }% \log\left(\mathbf{\Lambda}\left(\mathbf{u}\right) \right)$ Θ∈R^d

for some (asymptotic) loss function L and consistently estimated parameter set $\hat{\Lambda}$.

In Maume-Deschamps et al. 2017 it was shown that multivariate expectiles could be consistently estimated using Robbins-Monro's stochastic optimization for moderate levels of α . However, for elevated levels of α this approach, without any asymptotic extrapolation techniques, fails. K ロ ▶ K @ ▶ K ミ ▶ K ミ ▶ 그림 놀

[Multivariate Extreme Expectiles \(MEE\)](#page-23-0) [Optimization problem for MEE](#page-27-0) [Consistency for Approximated Optimization Problem](#page-35-0) [Numerical study](#page-44-0) [Discussion](#page-48-0)

For moderate levels of α (see Maume-Deschamps et al. 2017)

Figure: Difference in convergence between two different levels $\alpha = 0.7$ and $\alpha = 0.99$ for L₁-expectile, Pareto independent model $X_i \sim P\{2, 10\}$ (red) $X_i \sim P\{2, 20\}$ (blue).

-
-
- particularly in cases where there is no analytica[l so](#page-20-0)[lut](#page-22-0)[io](#page-20-0)[n](#page-21-0)[.](#page-22-0) \Rightarrow \Rightarrow 9 / 24

[Multivariate Extreme Expectiles \(MEE\)](#page-23-0) [Optimization problem for MEE](#page-27-0) [Consistency for Approximated Optimization Problem](#page-35-0) [Numerical study](#page-44-0) [Discussion](#page-48-0)

For moderate levels of α (see Maume-Deschamps et al. 2017)

Figure: Difference in convergence between two different levels $\alpha = 0.7$ and $\alpha = 0.99$ for L₁-expectile, Pareto independent model $X_i \sim P\{2, 10\}$ (red) $X_i \sim P\{2, 20\}$ (blue).

- \rightarrow Convergence is not very satisfactory for values of α close to 1.
- \rightarrow The algorithm is not efficient to estimate the asymptotic expectile.
- \leftrightarrow \leftrightarrow \leftrightarrow A study of asymptotic behavior of the exp[ec](#page-23-0)tile seems nec[es](#page-1-0)[s](#page-2-0)ar[y,](#page-23-0) particularly in cases where there is no analytica[l so](#page-21-0)[lut](#page-23-0)[io](#page-20-0)[n](#page-21-0)[.](#page-22-0) 9 / 24

1 [Motivation](#page-2-0)

² [Multivariate Extreme Expectiles \(MEE\)](#page-23-0)

³ [Optimization problem for MEE](#page-27-0)

⁴ [Consistency for Approximated Optimization Problem](#page-35-0)

⁵ [Numerical study](#page-44-0)

Proposition (Maume-Deschamps et al. (2018))

Assume that **X** has MRV distribution with index θ and, for all $i \in \{2, ..., d\}$, $\lim_{x\to+\infty}\frac{F_i(x)}{\overline{F_i(x)}}$ $\frac{F_i(x)}{\overline{F_1}(x)} = c_i$, (equivalent regularly varying marginal tails).

$$
\Theta:=(\eta,\beta_2,\ldots,\beta_d)=\lim_{\alpha\to 1}\left(\frac{1-\alpha}{\overline F_1\{e^1_\alpha(\pmb X)\}},\frac{e^2_\alpha(\pmb X)}{e^1_\alpha(\pmb X)},\ldots,\frac{e^d_\alpha(\pmb X)}{e^1_\alpha(\pmb X)}\right)
$$

$$
\frac{1}{\theta-1}-\eta\frac{\beta_k^{\theta}}{c_k}=-\sum_{i=1,i\neq k}^d\left\{\int_{\frac{\beta_i}{\beta_k}}^{\infty}\lambda^{ik}\left(\frac{c_i}{c_k}t^{-\theta},1\right)\mathrm{d}t-\eta\frac{\beta_k^{\theta-1}}{c_k}\beta_i\right\},\ k\in\{1,\ldots,d\}
$$

 $\bullet \quad \Theta^\perp=(\eta^\perp,\beta_2^\perp,\ldots,\beta_d^\perp)$ (asympt. \perp case) and $\bullet \quad \Theta^+ = (\eta^+, \beta_2^+, \ldots, \beta_d^+)$ (Comon. case). K ロ X K @ X K 할 X K 할 X (할)

11 / 24

Proposition (Maume-Deschamps et al. (2018))

Assume that **X** has MRV distribution with index θ and, for all $i \in \{2, ..., d\}$, $\lim_{x\to+\infty}\frac{F_i(x)}{\overline{F_i(x)}}$ $\frac{F_i(x)}{\overline{F_1}(x)} = c_i$, (equivalent regularly varying marginal tails). Consider the L₁-expectile $e_{\alpha}(X) = (e_{\alpha}^i(X))_{i \in \{1,...,d\}}$. Then any limit vector Θ :

$$
\Theta:=(\eta,\beta_2,\ldots,\beta_d)=\lim_{\alpha\to 1}\left(\frac{1-\alpha}{\overline{\digamma}_1\{e_\alpha^1(\bm{X})\}},\frac{e_\alpha^2(\bm{X})}{e_\alpha^1(\bm{X})},\ldots,\frac{e_\alpha^d(\bm{X})}{e_\alpha^1(\bm{X})}\right)
$$

satisfies the following system of equations

$$
\frac{1}{\theta-1}-\eta\frac{\beta_k^{\theta}}{c_k}=-\sum_{i=1,i\neq k}^d\left\{\int_{\frac{\beta_i}{\beta_k}}^{\infty}\lambda^{ik}\left(\frac{c_i}{c_k}t^{-\theta},1\right)\mathrm{d}t-\eta\frac{\beta_k^{\theta-1}}{c_k}\beta_i\right\},\ k\in\{1,\ldots,d\}
$$

where λ^{ik} is the upper tail dependence (UTD) function for the random pair (X_i, X_k) .

 $\bullet \quad \Theta^\perp=(\eta^\perp,\beta_2^\perp,\ldots,\beta_d^\perp)$ (asympt. \perp case) and $\bullet \quad \Theta^+ = (\eta^+, \beta_2^+, \ldots, \beta_d^+)$ (Comon. case). K ロ X K @ X K 할 X K 할 X [할 말]

Proposition (Maume-Deschamps et al. (2018))

Assume that **X** has MRV distribution with index θ and, for all $i \in \{2, ..., d\}$, $\lim_{x\to+\infty}\frac{F_i(x)}{\overline{F_i(x)}}$ $\frac{F_i(x)}{\overline{F_1}(x)} = c_i$, (equivalent regularly varying marginal tails). Consider the L₁-expectile $e_{\alpha}(X) = (e_{\alpha}^i(X))_{i \in \{1,...,d\}}$. Then any limit vector Θ :

$$
\Theta:=(\eta,\beta_2,\ldots,\beta_d)=\lim_{\alpha\to 1}\left(\frac{1-\alpha}{\overline{\digamma}_1\{e_\alpha^1(\bm{X})\}},\frac{e_\alpha^2(\bm{X})}{e_\alpha^1(\bm{X})},\ldots,\frac{e_\alpha^d(\bm{X})}{e_\alpha^1(\bm{X})}\right)
$$

satisfies the following system of equations

$$
\frac{1}{\theta-1}-\eta\frac{\beta_k^{\theta}}{c_k}=-\sum_{i=1,i\neq k}^d\left\{\int_{\frac{\beta_i}{\beta_k}}^{\infty}\lambda^{ik}\left(\frac{c_i}{c_k}t^{-\theta},1\right)\mathrm{d}t-\eta\frac{\beta_k^{\theta-1}}{c_k}\beta_i\right\}, k\in\{1,\ldots,d\}
$$

where λ^{ik} is the upper tail dependence (UTD) function for the random pair (X_i, X_k) .

In particular, explicit system solutions (see Maume-Deschamps et al. (2018))

- $\bullet \quad \, \bm{\Theta}^{\perp}=(\eta^{\perp},\beta_2^{\perp},\ldots,\beta_d^{\perp})$ (asympt. \perp case) and \bullet $\Theta^+ = (\eta^+, \beta_2^+, \ldots, \beta_d^+)$ (Comon. case).
- 11 / 24

Alternative optimization problem for MEEs

Definition

Let
$$
\Theta = (\eta, \beta_2, ..., \beta_d)
$$
, $\Lambda = (\theta, c_2, ..., c_d, \lambda(\cdot))$. Define the loss function

$$
L_{\Lambda}(\Theta) := \frac{1}{2} ||F_{\Lambda}(\Theta)||_2^2,
$$

where

$$
F_{\Lambda}(\Theta) = \left(F_{\Lambda}^{(1)}(\Theta), \ldots, F_{\Lambda}^{(d)}(\Theta) \right) = \left(g_{\Lambda}^{(1)}(\Theta) + f_{\Lambda}^{(1)}(\Theta), \ldots, g_{\Lambda}^{(d)}(\Theta) + f_{\Lambda}^{(d)}(\Theta) \right),
$$

with, for all $k \in \{1, \ldots, d\}$,

$$
g_{\mathbf{\Lambda}}^{(k)}(\Theta) = \frac{1}{\theta - 1} - \eta \frac{\beta_k^{\theta}}{c_k} \quad \text{and} \quad f_{\mathbf{\Lambda}}^{(k)}(\Theta) = \sum_{i \neq k}^{d} \left\{ \int_{\frac{\beta_i}{\beta_k}}^{\infty} \lambda^{ik} \left(\frac{c_i}{c_k} t^{-\theta}, 1 \right) dt - \eta \frac{\beta_k^{\theta - 1}}{c_k} \beta_i \right\}.
$$

Define an optimal vector Θ^* , obtained by optimizing the loss function L_A , *i.e.*,

$$
\Theta^* = \operatorname{argmin}_{\Theta} L_{\Lambda}(\Theta).
$$

Furthermore, we know that, for $\alpha \rightarrow 1$,

$$
\boldsymbol{e}_{\alpha}(\boldsymbol{X}) \sim \mathrm{VaR}_{\alpha}(X_1)\eta^{1/\theta}(1,\beta_2,\ldots,\beta_d)^{\top_{\text{c}}\,\text{c}} \text{ for } \text{c.e. } \text{c.t. }
$$

Broyden-Fletcher-Goldfarb-Shanno (BFGS) descent algorithm

To solve our optimization problem the quasi-Newton BFGS descent algorithm will be used here:

- \leftrightarrow to avoid calculating second derivatives,
- \leftrightarrow to improve computation time.

[see details here](#page-55-0)

$$
g^{(k)}_{\Lambda}(\Theta)=\frac{1}{\theta-1}-\eta\frac{\beta_k^{\theta}}{c_k};\qquad f^{(k)}_{\Lambda}(\Theta)=\sum_{i\neq k}^d\left\{\int_{\frac{\beta_i}{\beta_k}}^{\infty}\lambda^{ik}\left(\frac{c_i}{c_k}t^{-\theta},1\right)\mathrm{d}t-\eta\frac{\beta_k^{\theta-1}}{c_k}\beta_i\right\}
$$

Direct application of the BFGS algorithm for the optimization problem

$$
\Theta^* = \mathop{\rm argmin}_{\Theta} L_{\Lambda}(\Theta)
$$

is not possible.

Broyden-Fletcher-Goldfarb-Shanno (BFGS) descent algorithm

To solve our optimization problem the quasi-Newton BFGS descent algorithm will be used here:

- \leftrightarrow to avoid calculating second derivatives,
- \leftrightarrow to improve computation time.

[see details here](#page-55-0)

Problem

In the loss function, we have several unknown parameters.

$$
g_{\Lambda}^{(k)}(\Theta) = \frac{1}{\theta - 1} - \eta \frac{\beta_{k}^{\theta}}{c_{k}}; \quad f_{\Lambda}^{(k)}(\Theta) = \sum_{i \neq k}^{d} \left\{ \int_{\frac{\beta_{i}}{\beta_{k}}}^{\infty} \lambda^{ik} \left(\frac{c_{i}}{c_{k}} t^{-\theta}, 1 \right) dt - \eta \frac{\beta_{k}^{\theta - 1}}{c_{k}} \beta_{i} \right\}.
$$

$$
\Theta^* = \operatornamewithlimits{argmin}_{\Theta} L_{\Lambda}(\Theta)
$$

Broyden-Fletcher-Goldfarb-Shanno (BFGS) descent algorithm

To solve our optimization problem the quasi-Newton BFGS descent algorithm will be used here:

- \leftrightarrow to avoid calculating second derivatives,
- \leftrightarrow to improve computation time.

[see details here](#page-55-0)

Problem

In the loss function, we have several unknown parameters.

$$
g_{\Lambda}^{(k)}(\Theta) = \frac{1}{\theta - 1} - \eta \frac{\beta_{k}^{\theta}}{c_{k}}; \quad f_{\Lambda}^{(k)}(\Theta) = \sum_{i \neq k}^{d} \left\{ \int_{\frac{\beta_{i}}{\beta_{k}}}^{\infty} \lambda^{ik} \left(\frac{c_{i}}{c_{k}} t^{-\theta}, 1 \right) dt - \eta \frac{\beta_{k}^{\theta - 1}}{c_{k}} \beta_{i} \right\}.
$$

Direct application of the BFGS algorithm for the optimization problem

$$
\Theta^* = \mathop{\rm argmin}_{\Theta} L_{\Lambda}(\Theta)
$$

is not possible.

Approximated Optimization Problem

Instead, one can focus on the approximate optimum

$$
\operatornamewithlimits{argmin}_{\Theta \in \mathbb{R}^d} L_\Lambda(\Theta) \qquad \Rightarrow \qquad \operatornamewithlimits{argmin}_{\Theta \in \mathbb{R}^d} L_{\hat{\Lambda}}(\Theta)
$$

for some vector of estimators $\hat{\mathbf{\Lambda}} = (\hat{\theta}, \hat{c}_2, \dots, \hat{c}_d, \hat{\lambda})$.

1 To show that
$$
\hat{\Lambda} \underset{n \to \infty}{\longrightarrow} \Lambda
$$
,

2 To show that
$$
L_{\hat{\Lambda}}(\Theta) \xrightarrow[n \to \infty]{\mathbb{P}} L_{\Lambda}(\Theta)
$$
 and $\nabla L_{\hat{\Lambda}}(\Theta) \xrightarrow[n \to \infty]{\mathbb{P}} \nabla L_{\Lambda}(\Theta)$

$$
\widehat{\Theta}^k \underset{n\to\infty}{\longrightarrow} \Theta^k, \quad k \in \{1,2,\ldots\}.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ [할

Approximated Optimization Problem

Instead, one can focus on the approximate optimum

$$
\operatornamewithlimits{argmin}_{\Theta \in \mathbb{R}^d} L_\Lambda(\Theta) \qquad \Rightarrow \qquad \operatornamewithlimits{argmin}_{\Theta \in \mathbb{R}^d} L_{\hat{\Lambda}}(\Theta)
$$

for some vector of estimators $\hat{\mathbf{\Lambda}} = (\hat{\theta}, \hat{c}_2, \dots, \hat{c}_d, \hat{\lambda})$.

Specifically, convergence of the estimated optimum can be shown in the following way:

1 To show that
$$
\hat{\Lambda} \xrightarrow[n \to \infty]{} \Lambda
$$
,

$$
\widehat{\Theta}^k \underset{n\to\infty}{\longrightarrow} \Theta^k, \quad k \in \{1,2,\ldots\}.
$$

K ロ X K @ X K 할 X K 할 X (할)

Approximated Optimization Problem

Instead, one can focus on the approximate optimum

$$
\operatornamewithlimits{argmin}_{\Theta \in \mathbb{R}^d} L_\Lambda(\Theta) \qquad \Rightarrow \qquad \operatornamewithlimits{argmin}_{\Theta \in \mathbb{R}^d} L_{\hat{\Lambda}}(\Theta)
$$

for some vector of estimators $\hat{\mathbf{\Lambda}} = (\hat{\theta}, \hat{c}_2, \dots, \hat{c}_d, \hat{\lambda})$.

Specifically, convergence of the estimated optimum can be shown in the following way:

1 To show that
$$
\hat{\Lambda} \xrightarrow[n \to \infty]{} \Lambda
$$
,

2 To show that
$$
L_{\hat{\Lambda}}(\Theta) \xrightarrow[n \to \infty]{\mathbb{P}} L_{\Lambda}(\Theta)
$$
 and $\nabla L_{\hat{\Lambda}}(\Theta) \xrightarrow[n \to \infty]{\mathbb{P}} \nabla L_{\Lambda}(\Theta)$

$$
\widehat{\Theta}^k \underset{n\to\infty}{\overset{\mathbb{P}}{\longrightarrow}} \Theta^k, \quad k \in \{1,2,\ldots\}.
$$

K ロ > K @ > K 경 > K 경 > (경)의

Approximated Optimization Problem

Instead, one can focus on the approximate optimum

$$
\operatornamewithlimits{argmin}_{\Theta \in \mathbb{R}^d} L_\Lambda(\Theta) \qquad \Rightarrow \qquad \operatornamewithlimits{argmin}_{\Theta \in \mathbb{R}^d} L_{\hat{\Lambda}}(\Theta)
$$

for some vector of estimators $\hat{\mathbf{\Lambda}} = (\hat{\theta}, \hat{c}_2, \dots, \hat{c}_d, \hat{\lambda})$.

Specifically, convergence of the estimated optimum can be shown in the following way:

1 To show that
$$
\hat{\Lambda} \xrightarrow[n \to \infty]{} \Lambda
$$
,

2 To show that
$$
L_{\hat{\Lambda}}(\Theta) \xrightarrow[n \to \infty]{\mathbb{P}} L_{\Lambda}(\Theta)
$$
 and $\nabla L_{\hat{\Lambda}}(\Theta) \xrightarrow[n \to \infty]{\mathbb{P}} \nabla L_{\Lambda}(\Theta)$

3 To show the consistency of every iteration of the BFGS algorithm

$$
\widehat{\Theta}^k \underset{n\to\infty}{\longrightarrow} \Theta^k, \quad k \in \{1,2,\ldots\}
$$

K ロ ▶ K @ ▶ K ミ ▶ K ミ ▶ 그림 놀

[Motivation](#page-2-0)

- ² [Multivariate Extreme Expectiles \(MEE\)](#page-23-0)
- ³ [Optimization problem for MEE](#page-27-0)

⁴ [Consistency for Approximated Optimization Problem](#page-35-0)

⁵ [Numerical study](#page-44-0)

Considered estimators

where $\ell_{\theta} = \ell_{\theta}(n)$, $\ell_i = \ell_i(n)$ and $\ell_{\lambda} = \ell_{\lambda}(n)$ intermediate integer sequences.

Considered estimators

where $\ell_{\theta} = \ell_{\theta}(n)$, $\ell_i = \ell_i(n)$ and $\ell_{\lambda} = \ell_{\lambda}(n)$ intermediate integer sequences. The consistency of $\hat{\theta}$ and \hat{c}_i is established, e.g., in Deheuvels et al. (1988) and Maume-Deschamps et al. (2018). Furthermore, one can show:

Considered estimators

where $\ell_{\theta} = \ell_{\theta}(n)$, $\ell_i = \ell_i(n)$ and $\ell_{\lambda} = \ell_{\lambda}(n)$ intermediate integer sequences. The consistency of $\hat{\theta}$ and \hat{c}_i is established, e.g., in Deheuvels et al. (1988) and Maume-Deschamps et al. (2018). Furthermore, one can show:

Proposition

Taking
$$
\hat{\Lambda} = (\hat{\theta}, \hat{c}_2, \dots, \hat{c}_d, \hat{\lambda}_{\text{Beta}}^k)
$$
 as in Table above, one has

$$
\int_{\frac{\beta_i}{\beta_k}}^{\infty}\hat{\lambda}_{\mathrm{Beta}}^{ik}\left(\frac{\hat{c}_i}{\hat{c}_k}t^{-\hat{\theta}},1\right)dt \overset{\mathbb{P}}{\underset{n\to\infty}{\longrightarrow}}\int_{\frac{\beta_i}{\beta_k}}^{\infty}\lambda^{ik}\left(\frac{c_i}{c_k}t^{-\theta},1\right)dt.
$$

Theorem (Limit behaviour in n)

Let $\hat{\bm{\Lambda}}=(\hat{\theta},\hat{c}_2,\ldots,\hat{c}_d,\hat{\lambda}_{\text{Beta}}^{ik})$ as in Table above. Then

$$
L_{\hat{\Lambda}}(\Theta)\overset{\mathbb{P}}{\underset{n\to\infty}\longrightarrow}L_{\Lambda}(\Theta)\quad\text{and}\quad\nabla L_{\hat{\Lambda}}(\Theta)\overset{\mathbb{P}}{\underset{n\to\infty}\longrightarrow}\nabla L_{\Lambda}(\Theta).
$$

Moreover, given identical starting values Θ^0 , H_0 , $\sigma \in (0,1/2)$, $\rho \in (\sigma,1)$ and $\epsilon \geq 0$, for any step k, it holds that

$$
\widehat{\Theta}^k \underset{n \to \infty}{\xrightarrow{\mathbb{P}}} \Theta^k.
$$

K ロ > K @ > K 경 > K 경 > (경)의

Theorem (Limit behaviour in n)

Let $\hat{\bm{\Lambda}}=(\hat{\theta},\hat{c}_2,\ldots,\hat{c}_d,\hat{\lambda}_{\text{Beta}}^{ik})$ as in Table above. Then

$$
L_{\hat{\Lambda}}(\Theta)\overset{\mathbb{P}}{\underset{n\to\infty}\longrightarrow}L_{\Lambda}(\Theta)\quad\text{and}\quad\nabla L_{\hat{\Lambda}}(\Theta)\overset{\mathbb{P}}{\underset{n\to\infty}\longrightarrow}\nabla L_{\Lambda}(\Theta).
$$

Moreover, given identical starting values Θ^0 , H_0 , $\sigma \in (0,1/2)$, $\rho \in (\sigma,1)$ and $\epsilon \geq 0$, for any step k, it holds that

$$
\widehat{\Theta}^k \underset{n \to \infty}{\xrightarrow{\mathbb{P}}} \Theta^k.
$$

We now proceed by using an iterated two-step procedure.

Firstly we provided above an adequate estimate of the true loss function (and its gradient);

Secondly proceed with the optimization procedure.

K ロ ▶ K @ ▶ K ミ ▶ K ミ ▶ 그림 놀

Two-steps estimation procedure for MEEs

(Step 1) Taking the limit $n \to \infty$. Establish the consistency of $\hat{\Lambda}$ and subsequently $L_{\hat{\lambda}}$ and $\nabla L_{\hat{\lambda}}$. Then also the step-wise convergence of the BFGS algorithm.

$$
\lim_{k \to \infty} (\plim_{n \to \infty} \widehat{\Theta}^k) = \Theta^*.
$$

K ロ > K 御 > K 경 > K 경 > 경) 18 / 24

Two-steps estimation procedure for MEEs

- (Step 1) Taking the limit $n \to \infty$. Establish the consistency of $\hat{\Lambda}$ and subsequently $L_{\hat{\lambda}}$ and $\nabla L_{\hat{\lambda}}$. Then also the step-wise convergence of the BFGS algorithm.
- **(Step 2)** Taking the limit $k \to \infty$. Optimize the consistently approximated problem from Step 1 using the BFGS algorithm.

$$
\lim_{n\to\infty}(\plim_{n\to\infty}^{\mathbf{dim}}\widehat{\Theta}^k)=\Theta^*.
$$

18 / 24

Two-steps estimation procedure for MEEs

- **(Step 1)** Taking the limit $n \to \infty$. Establish the consistency of $\hat{\Lambda}$ and subsequently $L_{\hat{\lambda}}$ and $\nabla L_{\hat{\lambda}}$. Then also the step-wise convergence of the BFGS algorithm.
- **(Step 2)** Taking the limit $k \to \infty$. Optimize the consistently approximated problem from Step 1 using the BFGS algorithm.

Corollary (Non-exchangeable iterated limit in n and k)

Under the assumption that the BFGS algorithm solves for the global minimum, it holds that

$$
\lim_{k\to\infty}(\underset{n\to\infty}{\text{plim}}\widehat{\Theta}^k)=\Theta^*.
$$

18 / 24

K ロ ▶ K @ ▶ K ミ ▶ K ミ ▶ _ ミ | =

A numerical analysis

We consider a 3-dimensional random vector with

- \leftrightarrow Pareto type I margins $X_i \sim P\{3.5, 1.25(1 + i)\}, i \in \{1, 2, 3\}$;
- \leftrightarrow Various sample sizes *n*;
- \hookrightarrow Intermediate integer sequences $\ell_\theta = \ell_i = n^{0.75};$
- \leftrightarrow Dependence structures: independency, comonotonicity and non-trivial tail dependence structure (survival Clayton copula).

Performance of the integral of estimated UTD function

Behaviour of $\int_{\frac{\beta_2}{\beta_3}}^{\frac{\infty}{2}}\hat{\lambda}_{\text{Beta}}^{23}\left(\frac{\hat{c}_2}{\hat{c}_3}t^{-\hat{\theta}},1\right)dt$ for various sample sizes and subsequences $\ell_\lambda = n^q, \ q \in \{0.1, 0.2, \ldots, 0.9\}$ with several sample sizes n . The true value under comonotonic Pareto margins is displayed in [gre](#page-44-0)e[n h](#page-46-0)[o](#page-44-0)[rizo](#page-45-0)[n](#page-46-0)[ta](#page-43-0)[l](#page-44-0) [li](#page-47-0)[ne](#page-48-0)[.](#page-43-0)

 Ω

Boxplots for the estimated solution vector

(b) Results for comonotonic margins

Boxplots for the estimated solution vector for various sample sizes n with $\ell_\lambda = n^{0.50}$. Results are for $\widehat{\eta}$ (left), $\widehat{\beta}_2$ (center), $\widehat{\beta}_3$ (right). True values for independent Θ^{\perp} and comonotonic Θ^+ Θ^+ Θ^+ dependence structure in [da](#page-45-0)she[d](#page-45-0) [gre](#page-46-0)[en](#page-47-0) [l](#page-43-0)[in](#page-44-0)[e](#page-47-0)[s.](#page-48-0)

 290

Results for the estimate of $\hat{\beta}_2$ under the Pareto–Clayton model with varying dependence parameter $\theta_{\mathcal{C}}$ with $\ell_{\lambda} = n^{0.50}$ with $n = 5000$ and $\theta_C \in \{0.01, 0.1, 0.25, 0.5, 0.75, 1, 2.5, 5, 7.5, 10, 15, 20\}.$ Dotted lines provide true values for asymptotic independence (green) and comonotonicity (red) with $\beta_2^\perp = 1.764$ and $\beta_2^+ = 1.5$, respectively.

[Motivation](#page-2-0)

- ² [Multivariate Extreme Expectiles \(MEE\)](#page-23-0)
- ³ [Optimization problem for MEE](#page-27-0)
- ⁴ [Consistency for Approximated Optimization Problem](#page-35-0)
- ⁵ [Numerical study](#page-44-0)

We presented some results from :

N. Beck, E. Di Bernardino and M. Mailhot, Semi-parametric Estimation of Multivariate Extreme Expectiles, Journal of Multivariate Analysis, 2021, Vol. 184, <https://doi.org/10.1016/j.jmva.2021.104758> .

-
-

24 / 24

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ [할 날 수 있어

We presented some results from :

N. Beck, E. Di Bernardino and M. Mailhot, Semi-parametric Estimation of Multivariate Extreme Expectiles, Journal of Multivariate Analysis, 2021, Vol. 184, <https://doi.org/10.1016/j.jmva.2021.104758> .

Possible improvements :

 \hookrightarrow Clearly for extreme multivariate expectiles it is required that $\Theta > 0$ componentwise and include $\bm{\Theta}^{\perp}$ and $\bm{\Theta}^+$ as lower and upper bounds \Rightarrow box-constrained BFGS algorithm (or BFGS-B).

K ロ X K 倒 X K ヨ X K ヨ X コ ヨ H X Y

We presented some results from :

N. Beck, E. Di Bernardino and M. Mailhot, Semi-parametric Estimation of Multivariate Extreme Expectiles, Journal of Multivariate Analysis, 2021, Vol. 184, <https://doi.org/10.1016/j.jmva.2021.104758> .

Possible improvements :

- \hookrightarrow Clearly for extreme multivariate expectiles it is required that $\Theta > 0$ componentwise and include $\bm{\Theta}^{\perp}$ and $\bm{\Theta}^+$ as lower and upper bounds \Rightarrow box-constrained BFGS algorithm (or BFGS-B).
- \rightarrow Incorporate limited memory storage of the inverse hessian H_k (beneficial when the dimension of the problem is large) \Rightarrow limited-memory box-constrained BFGS algorithm (L-BFGS-B).

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ [할 날 수 있어

We presented some results from :

N. Beck, E. Di Bernardino and M. Mailhot, Semi-parametric Estimation of Multivariate Extreme Expectiles, Journal of Multivariate Analysis, 2021, Vol. 184, <https://doi.org/10.1016/j.jmva.2021.104758> .

Possible improvements :

- \hookrightarrow Clearly for extreme multivariate expectiles it is required that $\Theta > 0$ componentwise and include $\bm{\Theta}^{\perp}$ and $\bm{\Theta}^+$ as lower and upper bounds \Rightarrow box-constrained BFGS algorithm (or BFGS-B).
- \rightarrow Incorporate limited memory storage of the inverse hessian H_k (beneficial when the dimension of the problem is large) \Rightarrow limited-memory box-constrained BFGS algorithm (L-BFGS-B).

Future works :

 \hookrightarrow To consider the functional conditional multidimensional L^1 -expectile extension and to estimate extreme $e_{\alpha}(X, z)$ by using the extrapolation technique when $\alpha \rightarrow 1$.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ [할 날 수 있음]

We presented some results from :

N. Beck, E. Di Bernardino and M. Mailhot, Semi-parametric Estimation of Multivariate Extreme Expectiles, Journal of Multivariate Analysis, 2021, Vol. 184, <https://doi.org/10.1016/j.jmva.2021.104758> .

Possible improvements :

- \hookrightarrow Clearly for extreme multivariate expectiles it is required that $\Theta > 0$ componentwise and include $\bm{\Theta}^{\perp}$ and $\bm{\Theta}^+$ as lower and upper bounds \Rightarrow box-constrained BFGS algorithm (or BFGS-B).
- \rightarrow Incorporate limited memory storage of the inverse hessian H_k (beneficial when the dimension of the problem is large) \Rightarrow limited-memory box-constrained BFGS algorithm (L-BFGS-B).

Future works :

 \hookrightarrow To consider the functional conditional multidimensional L^1 -expectile extension and to estimate extreme $e_{\alpha}(X, z)$ by using the extrapolation technique when $\alpha \rightarrow 1$.

Thank you very much for your attention!

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ [할 날 수 있음]

Definition (MRV definition)

Let \boldsymbol{X} be a random vector on \mathbb{R}^d , the following definitions are equivalent: The vector **X** has regularly varying tail of index θ .

There exists for all $x > 0$ a finite measure μ on the unit sphere \mathbb{S}^{d-1} , a normalizing function $b: (0,\infty) \mapsto (0,\infty)$ such that

$$
\lim_{t\to+\infty}\mathbb{P}\left\{\|\boldsymbol{X}\|>xb(t),\frac{\boldsymbol{X}}{\|\boldsymbol{X}\|}\in\cdot\right\}=x^{-\theta}\mu(\cdot).
$$

The measure μ depends on the chosen norm, it is called the spectral measure of X .

K ロ > K @ > K 경 > K 경 > (경)의

Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton descent algorithm

<code>(Step 0)</code> Put counter $k:=0$ and choose initial values $\bm{\Theta}^{\bm{0}}\in\mathbb{R}^d$, $H_{\bm{0}}\in\mathbb{R}^{d\times d}$ initial approximation to the inverse of the Hessian matrix of L_{Λ} , $\sigma \in (0,1/2)$, $\rho \in (\sigma, 1)$, and $\epsilon > 0$.

- $(\mathsf{Step\ 1})$ Let $L_\mathbf{\Lambda}$ as in Definition [2.](#page-27-1) If $\|\nabla L_\mathbf{\Lambda}\left(\mathbf{\Theta}^k\right)\|\leq \epsilon.$ STOP.
- **(Step 2)** Calculate the direction $d^k = -H_k \nabla L_{\mathbf{\Lambda}} (\mathbf{\Theta}^k)$.
- **(Step 3)** Determine the step size $t_k > 0$ such that

$$
L_{\mathbf{\Lambda}}\left(\mathbf{\Theta}^{k}+t_{k}\mathbf{d}^{k}\right)\leq L_{\mathbf{\Lambda}}\left(\mathbf{\Theta}^{k}\right)+\sigma t_{k}\nabla L_{\mathbf{\Lambda}}\left(\mathbf{\Theta}^{k}\right),
$$

$$
\nabla L_{\mathbf{\Lambda}}\left(\mathbf{\Theta}^{k}+t_{k}\mathbf{d}^{k}\right)^{\top}\mathbf{d}^{k}\geq\rho\nabla L_{\mathbf{\Lambda}}\left(\mathbf{\Theta}^{k}\right)^{\top}\mathbf{d}^{k}.
$$

(Step 4) Let $\rho_k = 1/y_k^{\top} s_k$. Update the following:

•
$$
\Theta^{k+1} := \Theta^k + t_k d^k
$$
 • $\mathbf{y}^k := \nabla L_{\Lambda} (\Theta^{k+1}) - \nabla L_{\Lambda} (\Theta^k),$
\n• $\mathbf{s}^k := \Theta^{k+1} - \Theta^k$ • $H_{k+1} := (\mathbb{I} - \rho_k \mathbf{s}_k \mathbf{y}_k^{\top}) H_k (\mathbb{I} - \rho_k \mathbf{s}_k \mathbf{y}_k^{\top}) + \rho_k \mathbf{s}_k \mathbf{s}_k^{\top}.$

(Step 5) Set $k \leftarrow k+1$ and go to **(Step 1)**.

back to main slides

K ロ ▶ K @ ▶ K ミ ▶ K ミ ▶ _ 로(로, K) Q (2 / 2