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Risk measures : crucial tool in a multitude of �elds relating to mathematics
and statistics, constantly evolving.

There have been numerous developments in this �eld :

↪→ Establishing ideal properties

↪→ Extensions of univariate measures to higher dimension

↪→ Development of new measures

↪→ Estimating these measures non-parametrically or semi-parametrically
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Elicitability

Gneiting (2011) de�nes elicitability as the ability to express a risk measure
Tα(X ) in the form of an optimization problem:

Tα(X ) = argmin
x∈R

E {S(x , α)} ,

for a risk level α ∈ (0, 1), a random risk X , where S is the score function
associated to the risk measure Tα.
Two of the most well-known elicitable univariate risk measures:

Value-at-risk (VaR) VaRα(X ) = inf{x ∈ R : F (x) ≥ α}

VaRα(X ) = argmin
x∈R

E{α(X − x)+ + (1− α)(X − x)−}

where x+ = max{0, x} and x− = max{0,−x},
Expectiles (�expectation+quantiles�)

eα(X ) = argmin
x∈R

E
{
α(X − x)2+ + (1− α)(X − x)2−

}
.

Expectiles are coherent when α ≥ 0.5; this is quite advantageous.
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Expectiles

Expectiles are uniquely identi�ed by the �rst-order condition,

αE
[
{X − eα(X )}+

]
= (1− α)E

[
{X − eα(X )}−

]
.

The above equation can also be written as

1− α
α

=
E
[
{X − eα(X )}+

]
E
[
{X − eα(X )}−

] .
This makes the economic interpretation of expectiles as risk measures clearer:

Expectiles can be seen as the value of X that provides a pro�ts/loss ratio of 1−α
α

.

Note that both expectiles and VaR fall into the family of generalized quantiles
(Bellini et al. 2014), de�ned by

qα(X ) = argmin
x∈R

(αE [Φ1{(X − x)+}] + (1− α)E [Φ2{(X − x)−}]) ,

where Φ1,Φ2 : [0,∞) 7→ [0,∞) are strictly increasing convex functions
satisfying Φi (0) = 0 and Φi (1) = 1 for i ∈ {1, 2}.
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Elicitability in multivariate context

Ignoring potential dependence between risks can provide inaccurate inference
and induce prohibitive losses. As such, our interest lies in exploring multivariate
expectiles as these dependence structures can be incorporated directly into the
measure.
For any d-dimensional random vector X ∈ Rd an associated risk measure Tα is
elicitable if

Tα(X ) = argmin
x∈Rd

{S(x , α)} .

Previous literature on Multivariate Expectiles :

↪→ Multivariate geometric de�nition of expectiles (Herrmann et al. 2018)

↪→ (Maume-Deschamps et al. 2017) de�ne two notions of multivariate
expectiles: Lp-expectiles and Σ-expectiles.
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L1-expectiles

De�nition (L1-expectile)

De�ne the L1-expectile of a random vector X by

eα(X ) = argmin
x∈Rd

E
{
α
(∑d

i=1
|Xi − xi |+

)
2

+ (1− α)
(∑d

i=1
|Xi − xi |−

)
2
}
.

Analogously to the univariate case, the L1-expectile is the unique solution in
IRd of

1− α
α

=
E[‖(X − x)+‖1 1{Xk > xk}]
E[‖(X − x)−‖1 1{Xk < xk}]

, k ∈ {1, . . . , d}.

Thus, it can be interpreted as a ratio of expected positive scenarios over
negative ones.
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Our aim:

We aim to explore semi-parametric estimation of the L1-expectile for elevated
risk levels α ≈ 1

(i) when the underlying dependence structure and marginal distributions are
unknown;

(ii) via the approximated optimization problem

argmin
Θ∈Rd

LΛ̂ (Θ)

for some (asymptotic) loss function L and consistently estimated
parameter set Λ̂.

In Maume-Deschamps et al. 2017 it was shown that multivariate
expectiles could be consistently estimated using Robbins-Monro's
stochastic optimization for moderate levels of α.

However, for elevated levels of α this approach, without any asymptotic
extrapolation techniques, fails.
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For moderate levels of α (see Maume-Deschamps et al. 2017)

Figure: Di�erence in convergence between two di�erent levels α = 0.7 and α = 0.99

for L1-expectile, Pareto independent model Xi ∼ P{2, 10} (red) Xi ∼ P{2, 20} (blue).

↪→ Convergence is not very satisfactory for values of α close to 1.

↪→ The algorithm is not e�cient to estimate the asymptotic expectile.

↪→ A study of asymptotic behavior of the expectile seems necessary,
particularly in cases where there is no analytical solution.
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Proposition (Maume-Deschamps et al. (2018))

Assume that X has MRV distribution with index θ and, for all i ∈ {2, . . . , d},
limx→+∞

F i (x)

F1(x)
= ci , (equivalent regularly varying marginal tails).

Consider the L1-expectile eα(X ) = (e iα(X ))i∈{1,...,d}. Then any limit vector Θ:

Θ := (η, β2, . . . , βd) = lim
α→1

(
1− α

F 1{e1α(X )}
,
e2α(X )

e1α(X )
, . . . ,

edα(X )

e1α(X )

)
satis�es the following system of equations

1

θ − 1
− η β

θ
k

ck
= −

d∑
i=1,i 6=k

{∫ ∞
βi
βk

λik

(
ci
ck

t−θ, 1

)
dt − η

βθ−1k

ck
βi

}
, k ∈ {1, . . . , d}

where λik is the upper tail dependence (UTD) function for the random pair
(Xi ,Xk).

In particular, explicit system solutions (see Maume-Deschamps et al. (2018))
• Θ⊥ = (η⊥, β⊥2 , . . . , β

⊥
d ) (asympt. ⊥ case) and

• Θ+ = (η+, β+
2
, . . . , β+

d ) (Comon. case).
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Alternative optimization problem for MEEs

De�nition

Let Θ = (η, β2, . . . , βd), Λ = (θ, c2, . . . , cd , λ(·)). De�ne the loss function

LΛ(Θ) := 1

2
‖FΛ(Θ)‖22,

where

FΛ(Θ) =
(
F

(1)
Λ (Θ), . . . ,F

(d)
Λ (Θ)

)
=
(
g

(1)
Λ (Θ) + f

(1)
Λ (Θ), . . . , g

(d)
Λ (Θ) + f

(d)
Λ (Θ)

)
,

with, for all k ∈ {1, . . . , d},

g
(k)
Λ (Θ) =

1

θ − 1
− η

βθk
ck

and f
(k)
Λ (Θ) =

d∑
i 6=k


∫ ∞
βi
βk

λik
(

ci

ck
t−θ, 1

)
dt − η

βθ−1k

ck
βi

 .

De�ne an optimal vector Θ∗, obtained by optimizing the loss function LΛ, i.e.,

Θ∗ = argminΘ LΛ(Θ).

Furthermore, we know that, for α→ 1,

eα(X ) ∼ VaRα(X1)η1/θ(1, β2, . . . , βd)>.
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Broyden�Fletcher�Goldfarb�Shanno (BFGS) descent algorithm

To solve our optimization problem the quasi-Newton BFGS descent algorithm
will be used here:

↪→ to avoid calculating second derivatives,

↪→ to improve computation time.

see details here

Problem

In the loss function, we have several unknown parameters:

g
(k)
Λ (Θ) =

1

θ − 1
− η

βθk
ck

; f
(k)
Λ (Θ) =

d∑
i 6=k


∫ ∞
βi
βk

λik
(

ci

ck
t−θ, 1

)
dt − η

βθ−1k

ck
βi

 .

Direct application of the BFGS algorithm for the optimization problem

Θ∗ = argmin
Θ

LΛ(Θ)

is not possible.

13 / 24
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Instead, one can focus on the approximate optimum

argmin
Θ∈Rd

LΛ(Θ) ⇒ argmin
Θ∈Rd

LΛ̂(Θ)

for some vector of estimators Λ̂ = (θ̂, ĉ2, . . . , ĉd , λ̂).

Speci�cally, convergence of the estimated optimum can be shown in the
following way:

1 To show that Λ̂
P−→

n→∞
Λ,

2 To show that LΛ̂(Θ)
P−→

n→∞
LΛ(Θ) and ∇LΛ̂(Θ)

P−→
n→∞

∇LΛ(Θ)

3 To show the consistency of every iteration of the BFGS algorithm

Θ̂k P−→
n→∞

Θk , k ∈ {1, 2, . . .}.
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Considered estimators

Parameter Estimator

θ (tail index) θ̂ = 1

γ̂
where γ̂ = 1

`θ

∑`θ
i=1

ln(
X1:n−i+1,n

X1:n−`θ,n
)

ci (tail ratio) ĉi =
(

Xi :n−`i +1,n

X1:n−`i +1,n

)−θ̂
, i ∈ {2, . . . , d}

λ(xi , xk) (UTD function) λ̂ik
Beta(xi , xk) = n

`λ
Ĉ
(
`λ
n
xi ,

`λ
n
xk
)

with Ĉ survival empirical Beta Copula

where `θ = `θ(n), `i = `i (n) and `λ = `λ(n) intermediate integer sequences.

The consistency of θ̂ and ĉi is established, e.g., in Deheuvels et al. (1988) and
Maume-Deschamps et al. (2018). Furthermore, one can show:

Proposition

Taking Λ̂ = (θ̂, ĉ2, . . . , ĉd , λ̂
ik
Beta) as in Table above, one has∫∞

βi
βk

λ̂ik
Beta

(
ĉi
ĉk
t−θ̂, 1

)
dt

P−→
n→∞

∫∞
βi
βk

λik
(

ci
ck
t−θ, 1

)
dt.
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ik
Beta) as in Table above, one has∫∞

βi
βk

λ̂ik
Beta

(
ĉi
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Theorem (Limit behaviour in n)

Let Λ̂ = (θ̂, ĉ2, . . . , ĉd , λ̂
ik
Beta) as in Table above. Then

LΛ̂(Θ)
P−→

n→∞
LΛ(Θ) and ∇LΛ̂(Θ)

P−→
n→∞

∇LΛ(Θ).

Moreover, given identical starting values Θ0, H0, σ ∈ (0, 1/2), ρ ∈ (σ, 1) and
ε ≥ 0, for any step k, it holds that

Θ̂k P−→
n→∞

Θk .

We now proceed by using an iterated two-step procedure.

Firstly we provided above an adequate estimate of the true loss function (and
its gradient);

Secondly proceed with the optimization procedure.

17 / 24
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Two-steps estimation procedure for MEEs

(Step 1) Taking the limit n→∞. Establish the consistency of Λ̂ and subsequently
LΛ̂ and ∇LΛ̂. Then also the step-wise convergence of the BFGS algorithm.

(Step 2) Taking the limit k →∞. Optimize the consistently approximated problem
from Step 1 using the BFGS algorithm.

Corollary (Non-exchangeable iterated limit in n and k)

Under the assumption that the BFGS algorithm solves for the global minimum,
it holds that

lim
k→∞

(plim
n→∞

Θ̂k) = Θ∗.
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A numerical analysis

We consider a 3-dimensional random vector with

↪→ Pareto type I margins Xi ∼ P{3.5, 1.25(1 + i)}, i ∈ {1, 2, 3};
↪→ Various sample sizes n;

↪→ Intermediate integer sequences `θ = `i = n0.75;

↪→ Dependence structures: independency, comonotonicity and non-trivial tail
dependence structure (survival Clayton copula).
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Performance of the integral of estimated UTD function
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Boxplots for the estimated solution vector

50 100 250 500 1000 2500 5000

0
.1

0
.2

0
.3

0
.4

Sample size

η̂

50 100 250 500 1000 2500 5000

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

Sample size

β̂
2

50 100 250 500 1000 2500 5000

2
3

4
5

6

Sample size

β̂
3

(a) Results for independent margins

50 100 250 500 1000 2500 5000

0
.2

0
.4

0
.6

0
.8

1
.0

Sample size

η̂β̂
1

50 100 250 500 1000 2500 5000

1
.4

0
1

.4
5

1
.5

0
1

.5
5

1
.6

0
1

.6
5

1
.7

0

Sample size

β̂
2

50 100 250 500 1000 2500 5000

1
.9

2
.0

2
.1

2
.2

2
.3

Sample size

β̂
3

(b) Results for comonotonic margins

Boxplots for the estimated solution vector for various sample sizes n with `λ = n0.50.

Results are for η̂ (left), β̂2 (center), β̂3 (right). True values for independent Θ⊥ and

comonotonic Θ+ dependence structure in dashed green lines.
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We presented some results from :

N. Beck, E. Di Bernardino and M. Mailhot, Semi-parametric Estimation
of Multivariate Extreme Expectiles, Journal of Multivariate Analysis, 2021,
Vol. 184, https://doi.org/10.1016/j.jmva.2021.104758 .

Possible improvements :

↪→ Clearly for extreme multivariate expectiles it is required that Θ > 0
componentwise and include Θ⊥ and Θ+ as lower and upper bounds ⇒
box-constrained BFGS algorithm (or BFGS-B).

↪→ Incorporate limited memory storage of the inverse hessian Hk (bene�cial
when the dimension of the problem is large) ⇒ limited-memory
box-constrained BFGS algorithm (L-BFGS-B).

Future works :

↪→ To consider the functional conditional multidimensional L1-expectile
extension and to estimate extreme eα(X , z) by using the extrapolation
technique when α→ 1.

Thank you very much for your attention!
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De�nition (MRV de�nition)

Let X be a random vector on Rd , the following de�nitions are equivalent:

The vector X has regularly varying tail of index θ.

There exists for all x > 0 a �nite measure µ on the unit sphere
Sd−1, a normalizing function b : (0,∞) 7→ (0,∞) such that

lim
t→+∞

P
{
‖X‖ > xb(t),

X

‖X‖
∈ ·

}
= x−θµ(·).

The measure µ depends on the chosen norm, it is called the spectral
measure of X .
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Broyden�Fletcher�Goldfarb�Shanno (BFGS) quasi-Newton descent algorithm

(Step 0) Put counter k := 0 and choose initial values Θ0 ∈ Rd , H0 ∈ Rd×d initial
approximation to the inverse of the Hessian matrix of LΛ, σ ∈ (0, 1/2),
ρ ∈ (σ, 1), and ε ≥ 0.

(Step 1) Let LΛ as in De�nition 2. If ‖∇LΛ

(
Θk
)
‖ ≤ ε: STOP.

(Step 2) Calculate the direction dk = −Hk∇LΛ

(
Θk
)
.

(Step 3) Determine the step size tk > 0 such that

LΛ

(
Θk + tkd

k
)
≤ LΛ

(
Θk
)

+ σtk∇LΛ

(
Θk
)
,

∇LΛ

(
Θk + tkd

k
)>

d
k ≥ ρ∇LΛ

(
Θk
)>

d
k .

(Step 4) Let ρk = 1/y>k sk . Update the following:

• Θk+1 := Θk + tkd
k • y k := ∇LΛ

(
Θk+1

)
−∇LΛ

(
Θk
)
,

• sk := Θk+1 −Θk • Hk+1 :=
(
I− ρksky

>
k

)
Hk

(
I− ρksky

>
k

)
+ ρksks

>
k .

(Step 5) Set k ← k + 1 and go to (Step 1).
back to main slides
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