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Simulation plays a key role in the reliability analysis of complex systems.

Most of the time, these analyses can be reduced to estimating the probability
of occurrence of an undesirable event, using a stochastic model of the system.

If the considered event is rare, sophisticated sample-based procedures are
generally introduced to get a relevant estimate of the failure probability.

Problematic

Based on a reduced number of model evaluations, how to bound this failure
probability with a prescribed confidence ?
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(a) Real tank (b) Hydrodynamics (c) Structure dynamics

Figure: Pressure tank under dynamic pressure

Problematic

How to certify that the maximum value in time and space of the cumulative
equivalent plastic strain is less than a prescribed value ?

Example
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Notations

S ↔ system of interest,

x ∈ X ⊂ RD ↔ system characteristics (dimensions, boundary conditions,
material properties...),

x↦ y(x) ∈ R ↔ quantity of interest for the monitoring of S,

F = {x ∈ X ∣ y(x) < 0} ↔ system’s failure domain.

Assumption

x is not perfectly known ⇒ it is modeled by a r.v. X with known PDF fX .

⇒ pf ∶= PX(y(X) < 0) = ∫F fX(x)dx ↔ system failure probability of interest.

General framework
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pf ∶= PX(y(X) < 0) = ∫
F

fX(x)dx.

y ↔ output of a numerically expensive deterministic "black box" : for
each x, y(x) is unique, and can be calculated by using a simulator that can
take a long time to evaluate.

⇒ In this type of configuration, the calculation of pf generally relies on the
replacement of y by a surrogate model.

We focus here on the Gaussian process regression (GPR), which models y as
a particular realization of a Gaussian process Y ∼ GP(µ, Σ).
Under that formalism, pf = PX (Y (X) < 0 ∣ Y = y) .

⇒ pf is a particular realization of the random variable :

P Y
f ∶= PX (Y (X) < 0 ∣ Y ) .

Need for surrogate models
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Assuming that Y is a good approximation of y, pf can then be approximated by
the mean value p̂f of P Y

f (or possibly by p̃f ∶= PX (µ(X) < 0)) :

p̂f = EY [P Y
f ] = EX

⎡⎢⎢⎢⎢⎣Φ
⎛
⎝−

µ(X)√
Σ(X, X)

⎞
⎠
⎤⎥⎥⎥⎥⎦ , Φ(u) = ∫ u

−∞

1√
2π

exp(−v2

2
)dv.

Sampling techniques can finally be used to estimate p̂f (or p̃f ) without requiring
any additional evaluation of expensive function y.

Surrogate modeling and reliability analysis
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Sampling techniques can finally be used to estimate p̂f (or p̃f ) without requiring
any additional evaluation of expensive function y.

However, replacing true function y by an accurate surrogate can still lead to an
inaccurate estimation of pf ...

Surrogate modeling and reliability analysis
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To correctly anticipate the risks of deterioration of the system, we propose to
work on the construction of confidence bounds to failure probability
estimates.

Instead of working on the estimation of the mean value of P Y
f , we would like

to construct a robust estimator Q̂α,β of the (1-α) quantile of P Y
f , so that :

PY (P Y
f < qα) = 1 −α,

PQ̂α,β
(PY (P Y

f ≤ Q̂α,β ∣ Q̂α,β) ≥ 1 − α) ≥ 1 − β.

Surrogate modeling and reliability analysis
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PQ̂α,β
(PY (P Y

f ≤ Q̂α,β ∣ Q̂α,β) ≥ 1 −α) ≥ 1 − β.
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Values of P Y
f

α = 0.1

β = 0.1

qα ↔ (1-α)-quantile of P Y
f

Q̂α,β ↔ (1-β)-quantile of the estimator of qα

PDF of P Y
f

PDF of the estimator of qα

True value of pf

α characterizes the risk associated to the replacement of y by Y ,

β controls the fact that only finite-dimensional samples of Y (x) are available
for its construction.

Surrogate modeling and reliability analysis
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For α, β ∈ (0, 1) and a fixed number of evaluations of y,

First objective : propose an algorithm allowing us to construct this
estimator. Key elements :

1. order statistics,
2. the Gaussian process regression formalism,
3. a particular Marked Poisson Process.

Objectives
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For α, β ∈ (0, 1) and a fixed number of evaluations of y,

First objective : propose an algorithm allowing us to construct this
estimator. Key elements :

1. order statistics,
2. the Gaussian process regression formalism,
3. a particular Marked Poisson Process.

Second objective : propose a strategy adapted to the former algorithm to
sequentially minimize the dependence of Q̂α,β on the replacement of y by Y ,
while managing the cases where :

1. no point of the initial experimental design for the construction of Y

belongs to the failure domain ,
2. the failure domain is multimodal.

Due to time constraints, only the first objective will be detailed in this presentation.
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Context reminder

Input random vector : X ∈ X ⊂ Rd with PDF fX ,

Quantity of interest : x↦ y(x) ∈ R,

Failure probability : pf = PX(y(X) < 0).
Gaussian process regression

Model y has been evaluated in ℓ (the value of ℓ is assumed relatively small)
points of X, x

(1), . . . , x
(ℓ) (space filling LHS).

y is seen as a sample path of a Gaussian process defined on (Ω,A,P).
Let Y ∼ GP(µ, Σ) be this Gaussian process conditioned by the L available
code evaluations.

Initial exploration of the input space
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Y1, . . . , Ym are m ≥ 1 independent copies of Y ,

Xn
1 , . . . ,Xn

m are m ≥ 1 independent copies of a random set Xn of n > 1

points chosen (independently or not) in X,

P̂j ∶= P̂
Yj,Xn

j

f
is an estimator of pf relying on the projection of Yj in the n

points of Xn
j .

These estimators P̂1, . . . , P̂m are supposed to be sorted in ascending order. From
basic statistics, for 1 ≤ j ≤m and α ∈ (0, 1), we therefore have :

P(P̂j > qα) = j−1

∑
u=0

(m
u
)(1 − γ)m−uγu, γ ∶= P(P̂ Y,Xn

f
≤ qα).

Order statistics (1/2)
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Noticing that γ = P(P̂ Y,Xn

f
≤ qα) ≤ 1 − α(1 − P(P̂ Y,Xn

f
≤ P Y

f ∣ P Y
f ≥ qα)) =∶ γ⋆, if

we denote by j⋆(α, β) the minimal index such that

j⋆(α,β)−1

∑
u=0

(m
u
)(1 − γ⋆)m−uγu

⋆ ≥ 1 − β,

we obtain the two following results :

P(P̂j⋆(α,β) > qα) ≥ 1 − β,

PP̂j⋆(α,β)
(PY (P Y

f ≤ P̂j⋆(α,β) ∣ P̂j⋆(α,β)) ≥ 1 −α) ≥ 1 − β.

which lead to the searched result when replacing P̂j⋆(α,β) by Q̂α,β.

Order statistics (2/2)
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As qα is unknown, γ⋆ is unknown in the general case.

Depending on the choice for the estimator of P Y
f , asymptotic values can be

proposed for γ⋆.

For ex., if Y (ω) is a realization of Y and P̂
Y,Xn

f
(ω) = ∑n

i=1 1Y (X(i);ω)<0/n :

√
n(P̂ Y,Xn

j

f
(ω) − P Y

f (ω)) LÐ→ N (0, P Y
f (ω)(1 − P Y

f (ω))) (CLT).

⇒ P(P̂ Y,Xn

f
≤ P Y

f ∣ P Y
f ≥ qα) tends to 1/2 when n increases, which makes

γ⋆ = 1 −α(1 − P(P̂ Y,Xn

f
≤ P Y

f ∣ P Y
f ≥ qα)) tend to 1 − α/2.

However, when pf is very small, to numerically calculate P̂
Y,Xn

f
(ω), we need to

project Y in a very high number of points (≈ 100/P̂ Y,Xn

f
(ω)), which is often not

possible due to computational reasons (memory and conditioning problems).⇒ another estimator is needed !

Choice of the estimator (1/2)
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If P1, . . . , Pq are q independent copies of a Poisson process
P (− log (PX(Y (X; ω) < 0))),

P̂
Y,Xn

f
(ω) ∶= (1 − 1

q
)∑

q

k=1
Pk

defines an unbiased estimator of P Y
f (ω) = PX(Y (X; ω) < 0) such that :

γ⋆ becomes close to 1 − α/2 when q is high enough,
Y (ω) only needs to be projected in E [∑q

k=1
Pk] = −q log(P Y

f (ω))
points in average (≪ 100/P Y

f (ω) for the former MC approach).

For Z ∶= Y (X; ω), we can then notice that

P (− log (PX(Y (X; ω) < 0))) = sup{i; Zi ≥ 0} ,

Z0 = +∞, P(Zi+1 ≤ z ∣ Zi) = P(Z ≤ z ∣ Z ≤ Zi),
such that realizations of P̂

Y,Xn

f
can be obtained by launching in parallel on

the same instance of the random process Y several draws of {Zi, i ≥ 0}.

Choice of the estimator (2/2)
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Initialization

Construct the GPR-based surrogate model associated with y based on ℓ

evaluations of y, noted Y ∼ GP(µ, Σ).
Choose risk level α and confidence level β (for instance α = 0.1 and β = 0.1).

Choose a number of decreasing walks q (for instance q = 100).

Choose the number of independent repetitions m (for α = β = 0.1, m ≥ 45).

For 1 ≤ j ≤m (this can be done in parallel) :

Sample q independent realizations of X , noted X(ω1), . . . , X(ωq)
Sample one realization of the Gaussian vector(Y (X(ω1)), . . . , Y (X(ωq))), noted (y1, . . . , yq)
Define Yj(ω) ∶= Y ∣ Y (X(ωk)) = yk, 1 ≤ k ≤ q

Set niter = 0, X̂ j = {X(ω1), . . . , X(ωq)}, Ŷj = {y1, . . . , yq} .

Practical implementation
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Iteration
For 1 ≤ j ≤m (this can again be done fully in parallel) :

For 1 ≤ k ≤ q :

Set z = yk, P
j

k = 0
While z > 0 :

increment niter = niter + 1

draw at random a realization of X, denoted by x
⋆

draw at random a realization of Yj(x
⋆), denoted by y

⋆

If y⋆ < z, actualize : z = y⋆, P
j

k
= P

j

k
+ 1 Yj(ω) = Yj(ω) ∣ Yj(x

⋆) = y⋆,

X̂ j = X̂ j ∪ {x⋆}, Ŷj = Ŷj ∪ {y⋆}.

Compute p̃j ∶= (1 − 1

q
)∑q

k=1
P

j

k

.

Practical implementation
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⋆) = y⋆,

X̂ j = X̂ j ∪ {x⋆}, Ŷj = Ŷj ∪ {y⋆}.

Compute p̃j ∶= (1 − 1

q
)∑q
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P

j

k

.

⇒ By taking the j⋆(α, β)th biggest value among p̃1, . . . , p̃m, we obtain a value
with more than 1 − β chance of being larger than the 1 −α quantile of P Y

f .

Practical implementation
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(a) Real tank
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Figure: Pressure tank under dynamic pressure

pf ∶= PX(max
t,z

u(t, z) > s).
X = {geometry and material uncertainties } .

Back to the introduction example
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We first compute the value of y in ℓ = 50 points uniformly chosen in the input
space, and construct the GPR Y of y. None of these values of y was over s.

m = 100 estimators of P Y
f were computed using Y .

There are two sources for the dispersion : the variability related to Y (which
can be reduced by adding nadd new code evaluations) and the variability
related to the estimator (which can be reduced by increasing q).

n_add=0,q=100 n_add=25,q=100 n_add=50,q=100 n_add=50,q=1000

0.
00

2
0.

00
4

0.
00

6

Comparison of the dispersions obtained on the estimates of pf as a function of the
number of points added nadd and the number of Poisson processes q.

Results
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This presentation introduces a formalism for estimating probabilities of failure.

This approach is based on : GPR, order statistics, a marked Poisson process.

In order to ensure the security of systems of interest, it is proposed to focus
on the estimation of quantiles rather than the mean.

One of the objectives of the method is to avoid forgetting pathological
configurations in the risk analysis.

A sequential enrichment criterion particularly dedicated to the estimation
method can be found in :

G. Perrin. Point process-based approaches for the reliability analysis of systems
modeled by costly simulators. Reliability Engineering and System Safety, Elsevier,
In press. <hal-03228196>.

Conclusions and prospects
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