Dec Université
Custave Eiffel

Point process-based approaches for the reliability analysis of systems modeled by costly simulators

G. Perrin¹

RESIM 2021 | May 19th 2021

 1 COSYS, Université Gustave Eiffel, 77420 Champs-sur-Marne, France

- **S** Simulation plays a key role in the reliability analysis of complex systems.
- **Most of the time, these analyses can be reduced to estimating the probability** of occurrence of an undesirable event, using a stochastic model of the system.
- If the considered event is rare, sophisticated sample-based procedures are generally introduced to get a relevant estimate of the failure probability.

Problematic

Based on a reduced number of model evaluations, how to bound this failure probability with a prescribed confidence ?

Example

Figure: Pressure tank under dynamic pressure

Problematic

How to certify that the maximum value in time and space of the cumulative equivalent plastic strain is less than a prescribed value ?

[Introduction](#page-1-0)

- [Bounding the failure probability at a fixed budget](#page-3-0)
- Coupling GPR and point process approaches
- Practical implementation
- Conclusions and prospects

General framework

Notations

- $S \leftrightarrow$ system of interest,
- $\boldsymbol{x} \in \mathbb{X} \subset \mathbb{R}^D \leftrightarrow \textsf{system}$ characteristics (dimensions, boundary conditions, material properties...),
- \blacksquare $x \mapsto y(x) \in \mathbb{R} \leftrightarrow$ quantity of interest for the monitoring of S,
- **■** $\mathcal{F} = \{x \in \mathbb{X} \mid y(x) < 0\} \leftrightarrow$ system's failure domain.

Assumption

x is not perfectly known \Rightarrow it is modeled by a r.v. *X* with known PDF f_X .

 \Rightarrow $p_f := \mathbb{P}_X(y(X) < 0) = \int_{\mathcal{F}} f_X(x) dx \leftrightarrow$ system failure probability of interest.

Need for surrogate models

$$
p_f \coloneqq \mathbb{P}_{\mathbf{X}}(y(\mathbf{X}) < 0) = \int_{\mathcal{F}} f_{\mathbf{X}}(\mathbf{x}) d\mathbf{x}.
$$

- *y* ↔ output of a numerically **expensive deterministic "black box"** : for each $x, y(x)$ is unique, and can be calculated by using a simulator that can take a long time to evaluate.
- ⇒ In this type of configuration, the calculation of *p^f* generally relies on the replacement of *y* by a **surrogate model**.
- We focus here on the Gaussian process regression (GPR), which models *y* as a particular realization of a Gaussian process *Y* ∼ GP(*µ,*Σ).
- Under that formalism, $p_f = \mathbb{P}_X(Y(X) < 0 \mid Y = y)$.
- \Rightarrow p_f is a particular realization of the random variable :

$$
P_f^Y \coloneqq \mathbb{P}_{\mathbf{X}}\left(Y(\mathbf{X}) < 0 \mid Y\right).
$$

Assuming that *Y* is a good approximation of *y*, *p^f* can then be approximated by the mean value \widehat{p}_f of P_f^Y (or possibly by $\widetilde{p}_f \coloneqq \mathbb{P}_{\bm{X}}\left(\mu(\bm{X}) < 0\right))$:

$$
\widehat{p}_f = \mathbb{E}_Y \left[P_f^Y \right] = \mathbb{E}_X \left[\Phi \left(- \frac{\mu(X)}{\sqrt{\Sigma(X, X)}} \right) \right], \quad \Phi(u) = \int_{-\infty}^u \frac{1}{\sqrt{2\pi}} \exp \left(- \frac{v^2}{2} \right) dv.
$$

Sampling techniques can finally be used to estimate \widehat{p}_f (or \widetilde{p}_f) without requiring any additional evaluation of expensive function *y*.

Assuming that *Y* is a good approximation of *y*, *p^f* can then be approximated by the mean value \widehat{p}_f of P_f^Y (or possibly by $\widetilde{p}_f \coloneqq \mathbb{P}_{\bm{X}}\left(\mu(\bm{X}) < 0\right))$:

$$
\widehat{p}_f = \mathbb{E}_Y\left[P_f^Y\right] = \mathbb{E}_X\left[\Phi\left(-\frac{\mu(X)}{\sqrt{\Sigma(X,X)}}\right)\right], \quad \Phi(u) = \int_{-\infty}^u \frac{1}{\sqrt{2\pi}}\exp\left(-\frac{v^2}{2}\right)dv.
$$

Sampling techniques can finally be used to estimate \widehat{p}_f (or \widetilde{p}_f) without requiring any additional evaluation of expensive function *y*.

However, replacing true function *y* by an accurate surrogate can still lead to an inaccurate estimation of p_f ...

- To correctly anticipate the risks of deterioration of the system, we propose to work on the construction of **confidence bounds** to failure probability estimates.
- Instead of working on the estimation of the mean value of P_f^Y , we would like to construct a robust estimator $\widehat{Q}_{\alpha,\beta}$ of the $(1\text{-}\alpha)$ quantile of P_f^Y , so that :

$$
\mathbb{P}_Y(P_f^Y < q_\alpha) = 1 - \alpha,
$$

$$
\mathbb{P}_{\widehat{Q}_{\alpha,\beta}}\left(\mathbb{P}_Y\left(P_f^Y \le \widehat{Q}_{\alpha,\beta} \mid \widehat{Q}_{\alpha,\beta}\right) \ge 1 - \alpha\right) \ge 1 - \beta.
$$

Surrogate modeling and reliability analysis

$$
\mathbb{P}_{\widehat{Q}_{\alpha,\beta}}\left(\mathbb{P}_Y\left(P_f^Y \leq \widehat{Q}_{\alpha,\beta} \mid \widehat{Q}_{\alpha,\beta}\right) \geq 1-\alpha\right) \geq 1-\beta.
$$

- *α* characterizes the risk associated to the replacement of *y* by *Y* ,
- **β** controls the fact that only finite-dimensional samples of $Y(x)$ are available for its construction.

For $\alpha, \beta \in (0, 1)$ and a fixed number of evaluations of *y*,

- **First objective**: propose an algorithm allowing us to construct this estimator. Key elements :
	- 1. order statistics,
	- 2. the Gaussian process regression formalism,
	- 3. a particular Marked Poisson Process.

For $\alpha, \beta \in (0, 1)$ and a fixed number of evaluations of *y*,

- **First objective**: propose an algorithm allowing us to construct this estimator. Key elements :
	- 1. order statistics,
	- 2. the Gaussian process regression formalism,
	- 3. a particular Marked Poisson Process.
- **Second objective**: propose a strategy adapted to the former algorithm to sequentially minimize the dependence of $\widehat{Q}_{\alpha,\beta}$ on the replacement of y by Y , while managing the cases where :
	- 1. no point of the initial experimental design for the construction of *Y* belongs to the failure domain ,
	- 2. the failure domain is multimodal.

For $\alpha, \beta \in (0, 1)$ and a fixed number of evaluations of *y*,

- **First objective**: propose an algorithm allowing us to construct this estimator. Key elements :
	- 1. order statistics,
	- 2. the Gaussian process regression formalism,
	- 3. a particular Marked Poisson Process.
- **Second objective**: propose a strategy adapted to the former algorithm to sequentially minimize the dependence of $\widehat{Q}_{\alpha,\beta}$ on the replacement of y by Y , while managing the cases where :
	- 1. no point of the initial experimental design for the construction of *Y* belongs to the failure domain ,
	- 2. the failure domain is multimodal.

Due to time constraints, only the first objective will be detailed in this presentation.

Introduction

2 Bounding the failure probability at a fixed budget

3 Coupling GPR and point process approaches

- 4 Practical implementation
- 5 Conclusions and prospects

Initial exploration of the input space

Context reminder

- Input random vector : $\boldsymbol{X} \in \mathbb{X} \subset \mathbb{R}^d$ with PDF $f_{\boldsymbol{X}},$
- Quantity of interest : $x \mapsto y(x) \in \mathbb{R}$,
- **F** Failure probability : $p_f = \mathbb{P}_X(y(\boldsymbol{X}) < 0)$.

Gaussian process regression

- Model *y* has been evaluated in ℓ (the value of ℓ is assumed relatively small) points of $\mathbb{X},\, \boldsymbol{x}^{(1)},\ldots,\boldsymbol{x}^{(\ell)}$ (space filling LHS).
- *^y* is seen as a sample path of a Gaussian process defined on (Ω*,*A*,*P).
- Let *Y* ∼ GP(*µ,*Σ) be this Gaussian process conditioned by the *L* available code evaluations.

Order statistics (1/2)

- Y_1, \ldots, Y_m are $m \geq 1$ independent copies of *Y*.
- $\mathcal{X}_1^n, \ldots, \mathcal{X}_m^n$ are $m \ge 1$ independent copies of a random set \mathcal{X}^n of $n > 1$ points chosen (independently or not) in X ,
- $\widehat{P}_j \coloneqq \widehat{P}^{Y_j,\mathcal{X}^n_j}_f$ is an estimator of p_f relying on the projection of Y_j in the n points of \mathcal{X}_j^n .

These estimators $\widehat{P}_1, \ldots, \widehat{P}_m$ are supposed to be sorted in **ascending order**. From basic statistics, for $1 \leq j \leq m$ and $\alpha \in (0,1)$, we therefore have :

$$
\mathbb{P}(\widehat{P}_j > q_\alpha) = \sum_{u=0}^{j-1} {m \choose u} (1-\gamma)^{m-u} \gamma^u, \quad \gamma \coloneqq \mathbb{P}(\widehat{P}_f^{Y,\mathcal{X}^n} \leq q_\alpha).
$$

Order statistics (2/2)

Noticing that $\gamma = \mathbb{P}(\widehat{P}_f^{Y,\mathcal{X}^n}$ $f_f^{Y,\mathcal{X}^n} \leq q_\alpha$) ≤ 1 – α (1 – $\mathbb{P}(\widehat{P}_f^{Y,\mathcal{X}^n})$ $f^{Y,\mathcal{X}^{n}}_f \leq P_f^Y \mid P_f^Y \geq q_{\alpha}$)) =: γ_{\star} , if we denote by $j^\star(\alpha,\beta)$ the minimal index such that

$$
\sum_{u=0}^{j^*(\alpha,\beta)-1} {m \choose u} (1-\gamma_\star)^{m-u} \gamma_\star^u \ge 1-\beta,
$$

we obtain the two following results :

$$
\mathbb{P}(\widehat{P}_{j^*(\alpha,\beta)} > q_\alpha) \ge 1 - \beta,
$$

$$
\mathbb{P}_{\widehat{P}_{j^*(\alpha,\beta)}} (\mathbb{P}_Y(P_j^Y \le \widehat{P}_{j^*(\alpha,\beta)} \mid \widehat{P}_{j^*(\alpha,\beta)}) \ge 1 - \alpha) \ge 1 - \beta.
$$

which lead to the searched result when replacing $\bar P_{j^\star(\alpha,\beta)}$ by $\bar Q_{\alpha,\beta}.$

Choice of the estimator $(1/2)$

- As q_{α} is unknown, γ_{\star} is unknown in the general case.
- Depending on the choice for the estimator of P_f^Y , asymptotic values can be proposed for *γ*⋆.

For ex., if $Y(\omega)$ is a realization of Y and $\widehat{P}_f^{Y,\mathcal{X}^n}$ $\int_{f}^{Y,X^{n}}(\omega) = \sum_{i=1}^{n} 1_{Y(X^{(i)};\omega) < 0}/n$:

$$
\sqrt{n}(\widehat{P}_f^{Y,X_j^n}(\omega) - P_f^Y(\omega)) \xrightarrow{\mathcal{L}} \mathcal{N}\left(0, P_f^Y(\omega)(1 - P_f^Y(\omega))\right) \quad \text{(CLT)}.
$$

 $\Rightarrow \mathbb{P}(\widehat{P}_{f}^{Y,\mathcal{X}^{n}})$ $f^{Y,\mathcal{X}^{n}}_f \leq P^Y_f \mid P^Y_f \geq q_{\alpha}$) tends to $1/2$ when n increases, which makes $\gamma_{\star} = 1 - \alpha \left(1 - \mathbb{P}\left(\widehat{P}_{f}^{Y,\mathcal{X}^{n}}\right)\right)$ $f_f^{Y,\mathcal{X}^n} \leq P_f^Y \mid P_f^Y \geq q_\alpha$)) tend to $1 - \alpha/2$.

However, when p_f is very small, to numerically calculate $\widehat{P}_{f}^{Y,\mathcal{X}^n}$ $\int_f^{f_1,\mathcal{A}} \ (\omega)$, we need to project Y in a very high number of points $(\approx 100/\widehat{P}_f^{Y,\mathcal{X}^n}$ $f^{I,\mathcal{A}}_f\left(\omega\right)$), which is often not possible due to computational reasons (memory and conditioning problems). ⇒ **another estimator is needed !**

Choice of the estimator (2/2)

If P_1, \ldots, P_q are *q* independent copies of a Poisson process $P(-\log(P_X(Y(X;\omega) < 0))).$ $\widehat{P}^{Y,\mathcal{X}_n}_f(\omega) \coloneqq \left(1 - \frac{1}{a}\right)$ *q*) $\sum_{k=1}^{q} P_k$

defines an unbiased estimator of $P_f^Y(\omega)$ = $\mathbb{P}_{\bm{X}}(Y(\bm{X};\omega)$ < 0) such that :

- $γ[∗]$ becomes close to $1 − α/2$ when *q* is high enough,
- $Y(\omega)$ only needs to be projected in $\mathbb{E}\left[\sum_{k=1}^{q} P_{k}\right]$ = $-q\log(P_{f}^{Y}(\omega))$ points in average $(\ll 100/P_f^Y(\omega)$ for the former MC approach).

■ For $Z = Y(X; \omega)$, we can then notice that

 $P(-\log(P_{\mathbf{Y}}(Y(\mathbf{X};\omega) < 0))) = \sup\{i: Z_i > 0\}$

$$
Z_0 = +\infty, \ \mathbb{P}(Z_{i+1} \leq z \mid Z_i) = \mathbb{P}(Z \leq z \mid Z \leq Z_i),
$$

such that realizations of $\widehat{P}_f^{Y,\mathcal{X}_n}$ can be obtained by launching in parallel on the same instance of the random process Y several draws of $\{Z_i, i \geq 0\}$.

1 Introduction

- 2 Bounding the failure probability at a fixed budget
- **3** Coupling GPR and point process approaches
- 4 Practical implementation
- 5 Conclusions and prospects

Practical implementation

Initialization

- Construct the GPR-based surrogate model associated with *y* based on ℓ evaluations of *y*, noted *Y* ∼ GP(*µ,*Σ).
- Choose risk level α and confidence level β (for instance $\alpha = 0.1$ and $\beta = 0.1$).
- Choose a number of decreasing walks *q* (for instance $q = 100$).
- Choose the number of independent repetitions *m* (for $\alpha = \beta = 0.1$, $m \ge 45$).
- For $1 \leq i \leq m$ (this can be done in parallel) :
	- \bullet Sample *q* independent realizations of *X*, noted $X(\omega_1), \ldots, X(\omega_q)$
	- **•** Sample one realization of the Gaussian vector $(Y(X(\omega_1)), \ldots, Y(X(\omega_a)))$, noted (y_1, \ldots, y_a)
	- \bullet Define $Y_i(\omega) := Y \mid Y(\mathbf{X}(\omega_k)) = y_k, \; 1 \leq k \leq q$
	- \bullet Set *n*_{iter} = 0, $\hat{\mathcal{X}}^j$ = {*X*(*ω*₁), ..., *X*(*ω*_{*a*})</sub>, $\hat{\mathcal{Y}}^j$ = {*y*₁, ..., *y*_{*a*}}.

Practical implementation

Iteration

For $1 \leq j \leq m$ (this can again be done fully in parallel) :

■ For $1 \leq k \leq q$:

• Set
$$
z = y_k
$$
, $P_k^j = 0$

- \bullet While $z > 0$:
	- increment $n_{\text{iter}} = n_{\text{iter}} + 1$
	- draw at random a realization of $\boldsymbol{X},$ denoted by \boldsymbol{x}^{\star}
	- draw at random a realization of $Y_j(\bm{x}^\star)$, denoted by y^\star
	- If $y^* < z$, actualize : $z = y^*$, $P_k^j = P_k^j + 1$ $Y_j(\omega) = Y_j(\omega) | Y_j(\boldsymbol{x}^*) = y^*$, $\widehat{\mathcal{X}}^j = \widehat{\mathcal{X}}^j \cup \{\boldsymbol{x}^\star\}, \ \widehat{\mathcal{Y}}^j = \widehat{\mathcal{Y}}^j \cup \{\stackrel{..}{y}^\star\}.$

Compute $\widetilde{p}_j \coloneqq \left(1 - \frac{1}{q}\right)^{\sum_{k=1}^q P_k^j}.$

Practical implementation

Iteration

For $1 \leq j \leq m$ (this can again be done fully in parallel) :

■ For $1 \leq k \leq q$:

• Set
$$
z = y_k
$$
, $P_k^j = 0$

- \bullet While $z > 0$:
	- increment $n_{\text{iter}} = n_{\text{iter}} + 1$
	- draw at random a realization of $\boldsymbol{X},$ denoted by \boldsymbol{x}^{\star}
	- draw at random a realization of $Y_j(\bm{x}^\star)$, denoted by y^\star
	- If $y^* < z$, actualize : $z = y^*$, $P_k^j = P_k^j + 1$ $Y_j(\omega) = Y_j(\omega) | Y_j(\boldsymbol{x}^*) = y^*$, $\widehat{\mathcal{X}}^j = \widehat{\mathcal{X}}^j \cup \{\boldsymbol{x}^\star\}, \ \widehat{\mathcal{Y}}^j = \widehat{\mathcal{Y}}^j \cup \{\stackrel{..}{y}^\star\}.$

Compute $\widetilde{p}_j \coloneqq \left(1 - \frac{1}{q}\right)^{\sum_{k=1}^q P_k^j}.$

 \Rightarrow By taking the $j^*(\alpha, \beta)^\text{th}$ biggest value among $\widetilde{p}_1, \ldots, \widetilde{p}_m$, we obtain a value with more than $1 - \beta$ chance of being larger than the $1 - \alpha$ quantile of $P_f^Y.$

Back to the introduction example

(a) Real tank

(b) Time evolution of the pressure

(c) Time evolution of the displacement

Figure: Pressure tank under dynamic pressure

$$
p_f \coloneqq \mathbb{P}_{\mathbf{X}}(\max_{t,\mathbf{z}} u(t,\mathbf{z}) > s).
$$

 $X = \{$ geometry and material uncertainties $\}$.

- We first compute the value of *y* in $\ell = 50$ points uniformly chosen in the input space, and construct the GPR *Y* of *y*. None of these values of *y* was over *s*.
- m = 100 estimators of P_f^Y were computed using Y .
- There are two sources for the dispersion : the variability related to *Y* (which can be reduced by adding n_{add} new code evaluations) and the variability related to the estimator (which can be reduced by increasing *q*).

Comparison of the dispersions obtained on the estimates of *p^f* as a function of the number of points added n_{add} and the number of Poisson processes q.

1 Introduction

- 2 Bounding the failure probability at a fixed budget
- **3** Coupling GPR and point process approaches
- 4 Practical implementation

Outline

5 Conclusions and prospects

Conclusions and prospects

- **This presentation introduces a formalism for estimating probabilities of failure.**
- This approach is based on : GPR, order statistics, a marked Poisson process.
- In order to ensure the security of systems of interest, it is proposed to focus on the estimation of quantiles rather than the mean.
- One of the objectives of the method is to avoid forgetting pathological configurations in the risk analysis.
- A sequential enrichment criterion particularly dedicated to the estimation method can be found in :

G. Perrin. Point process-based approaches for the reliability analysis of systems modeled by costly simulators. Reliability Engineering and System Safety, Elsevier, In press. $<$ hal-03228196 $>$.

