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Motivation: Autonomous Vehicle Safety Testing

Unsafe deployment of AI-driven physical systems can lead to catastrophic events

Testing autonomous vehicles (AVs) is challenging because:

• Test matrix approaches cannot screen out AVs that excel in the test but not other safety-critical situations 
(Peng & LeBlanc ‘12)

• Naturalistic testing takes insurmountable time (Zhao et al. ‘15)

Tesla Autopilot Crash, May 2016

Tesla Autopilot Crash, March 2019

Tesla Autopilot Crash, March 2018

Uber Self-Drive Crash, March 2018



Motivation: Autonomous Vehicle Safety Testing
(NHTSA 2013) In US in 2013, 

0.53 million miles for one 
police-reported crash

99 million miles for a fatal 
crash

5.7 million police-
reported crashes

30,057 fatal crashes

38 years for police-
reported crash

6,877 years for a fatal 
crash

2.99 trillion miles traveled by all 
vehicles

14,012 annual mileage traveled 
by an average vehicle

 Impractical to deploy “test” AVs to observe enough crashes

 Approach: Integrate AV algorithms into high-fidelity simulated naturalistic driving environment (built from 
historical data)

 Rare-event simulation technique to enhance crash observations in simulation (Zhao et al. 2015, Zhao et al. 2017, 
Huang et al. 2017, Huang et al. 2018, O'Kelly et al. 2018).
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• Task: estimate safety measures (e.g. crash probability) of the tested vehicle under specific traffic 

scenario
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𝑃 𝐴𝑉 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚, 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 ∈ 𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡 𝑠𝑒𝑡



Problem Setting

• A stochastic environment denoted 𝑋 ∼ 𝑝

• Goal: Estimate 𝜇 = 𝑃 𝑋 ∈ 𝑆 for a rare-event set 𝑆

• Rarity parameter 𝛾, so 𝑆 = 𝑆𝛾 such that 𝜇 → 0 as 𝛾 → ∞

• Key Challenge: Complicated or “black-box” 𝑆

E.g., 𝑆𝛾 = {𝑥 ∈ 𝑅𝑑: 𝑓 𝑥 ≥ 𝛾}
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• A stochastic environment denoted 𝑋 ∼ 𝑝

• Goal: Estimate 𝜇 = 𝑃 𝑋 ∈ 𝑆 for a rare-event set 𝑆

• Rarity parameter 𝛾, so 𝑆 = 𝑆𝛾 such that 𝜇 → 0 as 𝛾 → ∞

• Key Challenge: Complicated or “black-box” 𝑆

• Proposals?

• Mathematical analysis

• “Black-box” methods such as cross-entropy (De Boer ’05, Rubinstein & Kroese ’13…), multi-level 
splitting / subset simulation (Au & Beck ‘01, Dean & Dupuis ’09, Villen-Altamirano ’94…)

• “Deep Probabilistic Accelerated Evaluation” (Deep-PrAE) (Arief et al. ‘21)

E.g., 𝑆𝛾 = {𝑥 ∈ 𝑅𝑑: 𝑓 𝑥 ≥ 𝛾}



Efficiency Certificate

• To estimate a small probability 𝜇 using Monte Carlo estimator ො𝜇𝑛, we 
need a relative accuracy

𝑃 ො𝜇𝑛 − 𝜇 > 𝜖𝜇 ≤ 𝛿

for some 0 < 𝛿, 𝜖 < 1

• Say ො𝜇𝑛 =
1

𝑛
σ𝑖=1
𝑛 𝑍𝑖 where 𝑍𝑖 i.i.d., unbiased

• Markov inequality: 
𝑉𝑎𝑟 𝑍𝑖
𝑛𝜖2𝜇2

≤ 𝛿
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Efficiency Certificate

• To estimate a small probability 𝜇 using Monte Carlo estimator ො𝜇𝑛, we 
need a relative accuracy

𝑃 ො𝜇𝑛 − 𝜇 > 𝜖𝜇 ≤ 𝛿
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• Markov inequality: 
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Small RE  ⇒ Small required 𝑛
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Efficiency Certificate

• Suppose we use naïve Monte Carlo (NMC):

ො𝜇𝑛 =
1

𝑛
෍

𝑖=1

𝑛

𝐼(𝑋𝑖 ∈ 𝑆)

• Then 𝑅𝐸 =
𝜇 1−𝜇

𝜇2
=

1

𝜇
⇒ 𝑛 ≈

1

𝜇
blows up when 𝜇 → 0

• If 𝜇 ≈ 𝑒−𝑐𝛾, then 𝑛 ≈ 𝑒𝑐𝛾 Exponential growth in 𝛾
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1

𝑛
෍

𝑖=1

𝑛

𝐼(𝑋𝑖 ∈ 𝑆)

• Then 𝑅𝐸 =
𝜇 1−𝜇

𝜇2
=

1

𝜇
⇒ 𝑛 ≈

1

𝜇
blows up when 𝜇 → 0

• If 𝜇 ≈ 𝑒−𝑐𝛾, then 𝑛 ≈ 𝑒𝑐𝛾 Exponential growth in 𝛾

Efficiency certificate: required 𝑛 or RE ≈ log(
1

𝜇
)



How to Obtain Efficiency Certificate?

Importance sampling (IS): 

We generate 𝑋 from a new IS distribution ෤𝑝, and output

𝑍 = 𝐼 𝑋 ∈ 𝑆 𝐿 𝑋

where 𝐿 𝑋 =
𝑑𝑝

𝑑 ෤𝑝
(𝑋) is the likelihood ratio

Estimator Ƹ𝜇𝑛 =
1

𝑛
σ𝑖=1
𝑛 𝑍𝑖 is unbiased



How to Obtain Efficiency Certificate?

How do we obtain a 𝑍 that has an efficiency certificate?

• Say 𝑋 ∼ 𝑁(𝜆, Σ)

• Estimate 𝑃(𝑋 ∈ 𝑆)

• Look for highest-density point inside 𝑆:

𝑎∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥∈𝑆
1

2
𝑥 − 𝜆 𝑇Σ−1 𝑥 − 𝜆

𝑎∗

𝑆
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Not always good..



How to Obtain Efficiency Certificate?

How do we obtain a 𝑍 that has an efficiency certificate?

𝑎1

𝑆

𝑎2

Dominant set = {𝑎𝑗: any point in 𝑆
is on the “far-side” half-space of 
at least one 𝑎𝑗}



How to Obtain Efficiency Certificate?

How do we obtain a 𝑍 that has an efficiency certificate?

References: Sadowsky & Bucklew 1990, Asmussen & Glynn 
2007, Blanchet & L. 2012, Juneja & Shahabuddin 2006, Rubino
& Tuffin 2009, Owen ‘13, L’Ecuyer et al. 2009, Honnappa et al. 
2018, Nakayama 2012, Botev et al. 2007, Rubinstein & Kroese
2016, Rhee et al. 2019…

An efficient IS needs to “take care” of all 
dominant points, by using a mixture 
distribution:

෤𝑝 =෍

𝑗

𝑞𝑗𝑁 𝑎𝑗 , Σ

𝑎1

𝑆

𝑎2



Perils of Black-Box Variance Reduction Algorithms

Suppose we estimate 𝜇 = 𝑃(𝑋 ≥ 𝛾 𝑜𝑟 𝑋 ≤ −𝑘𝛾) where 𝑋 ∼ 𝑝 = 𝑁(0,1)
and 0 < 𝑘 < 3. We choose ෤𝑝 = 𝑁(𝛾, 1) as the IS distribution to obtain ො𝜇𝑛. 

0−𝑘𝛾 𝛾
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𝛾
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)
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error = 𝑂 𝑛2 with probability higher than 1 − 1/2𝑛.
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Perils of Black-Box Variance Reduction Algorithms

Suppose we estimate 𝜇 = 𝑃(𝑋 ≥ 𝛾 𝑜𝑟 𝑋 ≤ −𝑘𝛾) where 𝑋 ∼ 𝑝 = 𝑁(0,1)
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• 1) RE blows up

• 2) But you don’t know..
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Perils of Black-Box Variance Reduction Algorithms

Suppose we estimate 𝜇 = 𝑃(𝑋 ≥ 𝛾 𝑜𝑟 𝑋 ≤ −𝑘𝛾) where 𝑋 ∼ 𝑝 = 𝑁(0,1)
and 0 < 𝑘 < 3. We choose ෤𝑝 = 𝑁(𝛾, 1) as the IS distribution to obtain ො𝜇𝑛. 
Then 

• 1) RE blows up

• 2) But you don’t know..

• In experiments, you see a nice empirical RE that gives you high 
“confidence” on your result, but in fact you run into systematic under-
estimation

0−𝑘𝛾 𝛾



Perils of Black-Box Variance Reduction Algorithms

Cross-entropy method: 
• Choose a parametric IS class ෤𝑝
• Empirically minimize Kullback-Leibler

divergence between ෤𝑝 and a “zero-
variance” distribution

May not converge to an IS that has efficiency 
certificate..



Perils of Black-Box Variance Reduction Algorithms

Cross-entropy method: 
• Choose a parametric IS class ෤𝑝
• Empirically minimize Kullback-Leibler

divergence between ෤𝑝 and a “zero-
variance” distribution

May not converge to an IS that has efficiency 
certificate..
Hence possibly under-estimate, but you 
don’t know..
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estimating upper and lower bounds
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Deep Probabilistic Accelerated Evaluation

• Relaxed Efficiency Certificate: Relax the rare-event estimation problem to 
estimating upper and lower bounds

• A two-stage procedure: 

• Stage 1: Rare-event-set learning

• Stage 2: Search dominant points of the learned set and run mixture IS

• A suitably constructed ReLU neural network classifier to learn set (Stage 1) 
achieves the relaxed efficiency certificate
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with sample size 𝑛 ≈ log
1
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Analogously for lower bound



Relaxed Efficiency Certificate

We achieve a relative accuracy

𝑃 ො𝜇𝑛 − 𝜇 < −𝜖𝜇 ≤ 𝛿

with sample size 𝑛 ≈ log
1

𝜇

A sufficient condition:

• ො𝜇𝑛 is upward biased, i.e., ҧ𝜇 = 𝐸 ො𝜇𝑛 ≥ 𝜇, and

• ො𝜇𝑛 has efficiency certificate to estimate ҧ𝜇



Relaxed Efficiency Certificate

We achieve a relative accuracy

𝑃 ො𝜇𝑛 − 𝜇 < −𝜖𝜇 ≤ 𝛿

with sample size 𝑛 ≈ log
1

𝜇

A sufficient condition:

• ො𝜇𝑛 is upward biased, i.e., ҧ𝜇 = 𝐸 ො𝜇𝑛 ≥ 𝜇, and

• ො𝜇𝑛 has efficiency certificate to estimate ҧ𝜇 Use mixture IS, if we know 
the rare-event set
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Outer Rare-Event Set Approximation

If we can learn ҧ𝑆 such that ҧ𝑆 ⊃ 𝑆, then ҧ𝜇 = 𝑃 𝑋 ∈ ҧ𝑆 ≥ 𝑃 𝑋 ∈ 𝑆 = 𝜇

Goal: Obtain a good outer approximation of 𝑆

How to learn a set?

Classification task: 

• Sample ෨𝑋𝑖 and label 𝑌𝑖 = 𝐼( ෨𝑋𝑖 ∈ 𝑆)

• Then “train” a classifier using the data ( ෨𝑋𝑖 , 𝑌𝑖)

Outer approximation means that the false negative rate is zero…
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Outer Rare-Event Set Approximation

Orthogonal monotone set:

If 𝑥 ∈ 𝑆, then any 𝑥′ ≥ 𝑥 also ∈ 𝑆

An easy outer approximation is to 
take the complement of the “step-
boundary” formed by all 0-labeled 
෨𝑋𝑖

Lazy-learner IS: Simulate the 
probability of falling into this 
“step-boundary” set



Outer Rare-Event Set Approximation

Lazy-learner IS:
Too many dominant points..



Outer Rare-Event Set Approximation

Deep-learning-based IS: 

Train a ReLU-activated classifier to 
obtain an outer approximation of 
𝑆

First train { ො𝑔 𝑥 ≥ 𝜅}, then tune 𝜅
to satisfy ҧ𝑆 ⊃ 𝑆

Stage 2: Learn the dominant 
points and construct mixture IS



Deep Probabilistic Accelerated Evaluation

Deep-PrAE IS:
Right # of dominant points, and satisfy 
relaxed efficiency certificate



Behind-the-Scene 1: MIP to Search “Best” 
Dominant Points in ReLU Network

• The number of integer variables is the number 
of neurons.

• Each neuron has four corresponding constraints.

𝑥: input variables
𝑠𝑖 ’s: input/output in 
each layer
𝑧𝑖’s: integer variables

𝑔 𝑥 ≥ 𝛾

𝑠𝑖 = max 𝑊𝑖
𝑇𝑠𝑖−1 + 𝑏𝑖 , 0

ReLU network:

 Input 𝑠0.

 In layer 𝑘 with input 𝑠𝑘, 𝑦𝑘 = 𝑊𝑘𝑠𝑘 + 𝑏𝑘,  
𝑠𝑘+1 = 𝜎 𝑦𝑘 = max 𝑦𝑘 , 0 .

Input

Output

Hidden



Behind-the-Scene 2: Sequential “Cutting Plane” to 
Search All Dominant Points in ReLU Network



Behind-the-Scene 3: Conservativeness of 
Upper Bounds
With probability at least 1 − 𝛿, 

𝑃 𝑓𝑎𝑙𝑠𝑒 + 𝑣𝑒 ≤

𝑅 𝑔∗ + 2 sup
𝑔∈𝒢

𝑅𝑛1 𝑔 − 𝑅 𝑔

ℎ 𝜅∗ − 𝑡 𝛿, 𝑛1 𝑑Lip 𝑔∗ − ො𝑔 − 𝑔∗ ∞

.

Here, Lip(𝑔∗) is the Lipschitz parameter of 𝑔∗, and 𝑡 𝛿, 𝑛1 =

3
log 𝑛1𝑞𝑙 +dlog 𝑀+log

1

𝛿

𝑛1𝑞𝑙

1

𝛿

.



Example
• CE GMM-2 captures enough dominant 

points ⇒ efficient and gives accurate 
estimate

• CE Naive is “confident” but under-
estimate

• Deep-PrAE (modified) locates enough 
dominant points ⇒ efficient and gives 
accurate estimate



Example of Intelligent Driver Model (IDM)
• A car-following scenario involving a human-driven lead vehicle followed by an autonomous 

vehicle

• Time horizon 𝑇 = 60𝑠 with a sequence of 15 Gaussian random actions at a 4 second epoch

• 10,000 sample budget.



Self-Driving Example
• Deep-PrAE produces tighter bounds 

than LL

• When 𝛾 = 1, LL UB has 5,644 dominant 
points vs 42 in Deep-PrAE

• Most methods are “confident” about 
their estimation, and some of them 
must under-estimate



Summary

• Motivated by safety-testing of intelligent physical systems

• Motivated from the perils of black-box variance reduction algorithms

• Deep Probabilistic Accelerated Evaluation (Deep-PrAE):
Combine ReLU-activated neural net classifiers for set learning with dominant point 
methodology to design IS with relaxed efficiency certificate 

• Towards “model-free” importance sampling

• Towards “high-dimensional” importance sampling

• Tail model error

• How to interpret rare-event probability

+ve Thoughts:

-ve Thoughts:
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