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Motivation: Autonomous Vehicle Safety Testing

Unsafe deployment of Al-driven physical systems can lead to catastrophic events

Tesla Autopilot Crash, May 2016
Uber Self-Drive Crash, March 2018
Tesla Autopilot Crash, March 2018

Tesla Autopilot Crash, March 2019

Testing autonomous vehicles (AVs) is challenging because:

» Test matrix approaches cannot screen out AVs that excel in the test but not other safety-critical situations
(Peng & LeBlanc ‘12)

» Naturalistic testing takes insurmountable time (Zhao et al. ‘15)



Motivation: Autonomous Vehicle Safety Testing

(NHTSA 2013) In US in 2013,

. : 0.53 million miles for one 38 years for police-
>-7 million police- li ted h reported crash
reported crashes police-reported cras P
30,057 fatal crashes 99 million miles for a fatal 6,877 years for a fatal

crash crash
2.99 trillion miles traveled by all 14,012 annual mileage traveled
vehicles by an average vehicle

Impractical to deploy “test” AVs to observe enough crashes

Approach: Integrate AV algorithms into high-fidelity simulated naturalistic driving environment (built from
historical data)

Rare-event simulation technique to enhance crash observations in simulation (Zhao et al. 2015, Zhao et al. 2017,
Huang et al. 2017, Huang et al. 2018, O'Kelly et al. 2018).
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* Task: estimate safety measures (e.g. crash probability) of the tested vehicle under specific traffic
scenario
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Motivation: Autonomous Vehicle Safety Testing

* Task: estimate safety measures (e.g. crash probability) of the tested vehicle under specific traffic
scenario T

P( (AV algorithm, environment) € conflict set )
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a. large-scale driving database d. detailed safety-critical event simulator
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A stochastic environment denoted X ~ p

Goal: Estimate u = P(X € S) for a rare-event set S

Rarity parameter y,s0 S = S, suchthaty - 0asy - 0 Eg,5, ={x € R%: f(x) =y}
Key Challenge: Complicated or “black-box” S

Proposals?
* Mathematical analysis

* “Black-box” methods such as cross-entropy (De Boer '05, Rubinstein & Kroese ’'13...), multi-level
splitting / subset simulation (Au & Beck ‘01, Dean & Dupuis ‘09, Villen-Altamirano '94...)

* “Deep Probabilistic Accelerated Evaluation” (Deep-PrAE) (Arief et al. 21)



Efficiency Certificate

* To estimate a small probability u using Monte Carlo estimator fi,, we
need a relative accuracy

P(lﬁn_ﬂl >E.u) <0
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* Say i, = % 1 Z; where Z; i.i.d., unbiased

* Markov inequality:
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Efficiency Certificate

* To estimate a small probability u using Monte Carlo estimator fi,, we
need a relative accuracy

P(lg, —ul >en) <6
forsome(0<9d,e<1

* Say i, = % 1 Z; where Z; i.i.d., unbiased

* Markov inequality:
RE Var(Z;)

nz=z— Relative Error (RE) =
de? e

Small RE = Small required n



Efficiency Certificate

e Suppose we use naive Monte Carlo (NMC):
n
~ 1
fin=— ) 1(X €5)
i=1

e Then RE = #U=H _ 1
u? u

= n = —blowsupwhenu — 0

R

e If u = e~ Y, thenn = e’ Exponential growth iny



Efficiency Certificate

e Suppose we use naive Monte Carlo (NMC):
n
~ 1
fin=— ) 1(X €5)
i=1

e Then RE = #U=H _ 1
u? u

= n = —blowsupwhenyu — 0

R

e If u = e~ Y, thenn = e’ Exponential growth iny

Efficiency certificate: required n or RE = log(i)



How to Obtain Efficiency Certificate?

Importance sampling (IS):

We generate X from a new IS distribution p, and output
Z=I1(X€eS)L(X)

where L(X) = Z—I; (X) is the likelihood ratio

. A1 . .
Estimator fi, =~ Z; is unbiased
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How do we obtain a Z that has an efficiency certificate?

*Say X ~ N1, %)
* Estimate P(X € §)
* Look for highest-density point inside S:

a* = a‘rgmianSE (x — DT (x - 1)



How to Obtain Efficiency Certificate?

How do we obtain a Z that has an efficiency certificate?

*Say X ~ N1, %)
* Estimate P(X € §)
* Look for highest-density point inside S:

a* = a‘rgmianSE (x — DT (x - 1)

Not always good..
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How do we obtain a Z that has an efficiency certificate?

Dominant set = {aj: any pointin S
is on the “far-side” half-space of
at least one a;}



How to Obtain Efficiency Certificate?

How do we obtain a Z that has an efficiency certificate?

An efficient IS needs to “take care” of all
dominant points, by using a mixture
distribution: .

D = Z q;N(a;,Z)
i

References: Sadowsky & Bucklew 1990, Asmussen & Glynn
2007, Blanchet & L. 2012, Juneja & Shahabuddin 2006, Rubino
& Tuffin 2009, Owen ‘13, UEcuyer et al. 2009, Honnappa et al.
2018, Nakayama 2012, Botev et al. 2007, Rubinstein & Kroese
2016, Rhee et al. 2019...
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and 0 < k < 3. We choose p = N(y, 1) as the IS distribution to obtain ji,,.
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Perils of Black-Box Variance Reduction Algorithms

Suppose we estimateuy = P(X =y or X < —ky) where X ~ p = N(0,1)
and 0 < k < 3. We choose p = N(y, 1) as the IS distribution to obtain ji,,.
Then

* 1) RE blows up
e 2) But you don’t know..

* In experiments, you see a nice empirical RE that gives you high

“confidence” on your result, but in fact you run into systematic under-
estimation




Perils of Black-Box Variance Reduction Algorithms

Cross-entropy method:

* Choose a parametric IS class p

* Empirically minimize Kullback-Leibler
divergence between p and a “zero-
variance” distribution

May not converge to an IS that has efficiency
certificate..



Perils of Black-Box Variance Reduction Algorithms

Cross-entropy method:

* Choose a parametric IS class p

* Empirically minimize Kullback-Leibler
divergence between p and a “zero-
variance” distribution

May not converge to an IS that has efficiency
certificate..

Hence possibly under-estimate, but you
don’t know..
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Deep Probabilistic Accelerated Evaluation

* Relaxed Efficiency Certificate: Relax the rare-event estimation problem to
estimating upper and lower bounds

* A two-stage procedure:

» Stage 1: Rare-event-set learning

e Stage 2: Search dominant points of the learned set and run mixture IS

e A suitably constructed ReLU neural network classifier to learn set (Stage 1)
achieves the relaxed efficiency certificate
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Relaxed Efficiency Certificate

We achieve a relative accuracy

P(ﬁn_ﬂ<_6ﬂ)g5

with sample size n = log (i)

Want to get a good upper bound for u with n = log (i)
Analogously for lower bound
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with sample size n = log (%)

A sufficient condition:
* ii, is upward biased, i.e., i = Efi,, = u, and

* il,, has efficiency certificate to estimate {f ——__ Use mixture IS, if we know
the rare-event set
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with sample size n = log (%)

A sufficient condition:
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* il,, has efficiency certificate to estimate [t
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Outer Rare-Event Set Approximation

If we can learn S suchthat S © S, theni=P(X€S)=>P(X€S) =pu
Goal: Obtain a good outer approximation of S

How to learn a set?

Classification task:

» Sample X; and label Y; = I(X; € §)

* Then “train” a classifier using the data (X;, ¥;)

Outer approximation means that the false negative rate is zero...
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Outer Rare-Event Set Approximation

Orthogonal monotone set:
If x €S,thenanyx’ > xalso€ S

An easy outer approximation is to
take the complement of the “step- x
boundary” formed by all O-labeled

X;

Lazy-learner IS: Simulate the
probability of falling into this
“step-boundary” set




Outer Rare-Event Set Approximation

Lazy-learner IS:
Too many dominant points..




Outer Rare-Event Set Approximation

Deep-learning-based IS:

Train a ReLU-activated classifier to
obtain an outer approximation of

S

First train {g(x) = K}, then tune k
to satisfy S © S

Stage 2: Learn the dominant
points and construct mixture IS




Deep Probabilistic Accelerated Evaluation

Deep-PrAE IS:
Right # of dominant points, and satisfy
relaxed efficiency certificate




Behind-the-Scene 1: MIP to Search “Best”
Dominant Points in ReLU Network

ReLU network:

= Input sg.

= Inlayer k with input s, v, = WSk + by,
Sk+1 = 0(yr) = max{yy, 0}.

Hidden

Input

min

B Y TR el P

2
x|

/ glx) =y

9 =7

l st

x: input variables
s;’s: input/output in
each layer

z;'s: integer variables

* The number of integer variables is the number
of neurons.

S; = max{WiTsi_l + b;, 0}

e Each neuron has four corresponding constraints.




Behind-the-Scene 2: Sequential “Cutting Plane” to
Search All Dominant Points in ReLU Network

Input: Prediction model g(x), threshold 7.
Output: Dominating-points set A.

1 Start with A = 0;
2 While {x:g(x)>7,a/(x—a;) <0, Va, €A} #0 do
3 Find a dominating point a by solving the optimization problem

a=argmin ||x|’
X
sit. gx)>vy
d:(x—a;) <0, for Va; € A

and update A < AU{a};
4 End




Behind-the-Scene 3: Conservativeness of
Upper Bounds

With probability atleast 1 — ¢,

R(g)+ZSUP\R (9) — R(9)|

» l N < gey .
(fa Se Ue) h(K . t(5,n1)\/_Llp(g ) — ||g —J ”oo)

Here, Lip(g~) is the Lipschitz parameter of g*, and t(d,ny) =
3 (log(n1q1)+dlog M+log—>

niqi




Example

* CE GMM-2 captures enough dominant
points = efficient and gives accurate
estimate

e CE Naive is “confident” but under-
estimate

* Deep-PrAE (modified) locates enough
dominant points = efficient and gives
accurate estimate

of _ —
A A
_
-10
“ _20 —— CE Naive
2 —— CE GMM-2
w — AMS
#70 /\p/d
—40
—50
1.0 1.2 1.4 1.6 1.8 2.0
Y
103
ES 2
c 10
&j -i-tf"':-1-:':‘?t—jt—:_—_—--v-,hqi:"“’;‘*_T—__
1
E 10
Q | ===
UE.I 10 - Deep-PrAE UB - = LLLB == CE GMM-2
- LLUB - CE Naive - Deep-PrAE Mod.
: - = Deep-PrAE LB
1077 1.2 1.4 1.6 1.8 2.0




Example of Intelligent Driver Model (IDM)

* A car-following scenario involving a human-driven lead vehicle followed by an autonomous
vehicle

* Time horizon T = 60s with a sequence of 15 Gaussian random actions at a 4 second epoch
* 10,000 sample budget.

Autonomous Vehicle (IDM) ==\ Lead Vehicle (Random Actions)

BN wx
[xfollow, vfollow, afollow]t " & I:xlead. Vlead. a!ead]t
r(t) = (x L)

> L : lead xfollow - — Ut

Tr=1u0
rjz _ .U;C Parameters Value
U = uy Safety Distance (s0) 2 m
v s (vr, Avy). Speed of AV in free traffic (v0) 30 m/s
v =a(l — (—f)" — (- =0 )2) Maximum Acceleration of AV (a) 2 m/sN2
v0) Sf Comfortable Deceleration of AV (b) 1.67 m/s"2
. veAvy Maximum Deceleration of AV (d) 4 m/s"2
s (vp, Avy) = s0 4 v T + Wab Safe Time Headway (T) 1.5s
o — w1, Acceleration Exponent Parameter (\delta) 4
f z f Car Length (L) 4m

Avp =vp — 1y



Selt-Driving Example

* Deep-PrAE produces tighter bounds
than LL

* Wheny =1, LLUB has 5,644 dominant
points vs 42 in Deep-PrAE

e Most methods are “confident” about
their estimation, and some of them
must under-estimate

o =
| o
b |
(- w

Estimated Probability

103

102.

Empirical RE, in %
=
<,

=
o
[

10—17 ]

“ea

-= Deep-PrAE UB
- LLUB w— CE GMM-64

.....
------
--------
........
®as
..
..
..
"

Sxs,
Pag,
Sia
e
.
A%
.
""""
L)
Cea,

‘~\
—
=

- CE Naive

~
—=— Deep-PrAELB —— AMS i S i, > o PR
i L LB Deep-PrAE Mod ™~ e
1.0 1.2 1.4 1.6 1.8 2.0
4
- Deep-PrAEUB~~ LLLB - CE GMM-64
- LLUB - CE Naive - Deep-PrAE Mod

- = Deep-PrAE LB




summary

* Motivated by safety-testing of intelligent physical systems
* Motivated from the perils of black-box variance reduction algorithms

e Deep Probabilistic Accelerated Evaluation (Deep-PrAE):

Combine RelLU-activated neural net classifiers for set learning with dominant point
methodology to design IS with relaxed efficiency certificate

+ve Thoughts:

* Towards “model-free” importance sampling
e Towards “high-dimensional” importance sampling

-ve Thoughts:

* Tail model error
 How to interpret rare-event probability
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