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PART I: Multilevel Splitting
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Multilevel Splitting setting

Let (Xt)t∈[0,∞) be an Rd -valued Markov process with initial condition
X0 = 0. We are interested in finding:

p := P(τB < τA),

where τA := inf{t > 0 : Xt ∈ A} and τB := inf{t > 0 : Xt ∈ B}. Here, B
is very small and A is some large absorbing set.
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Multilevel Splitting
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Multilevel Splitting
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Multilevel Splitting
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Description of the algorithm

Let nk be splitting factors (in our example nk = 2) and r be the total
number of paths that reached set B. We put

p̂ :=
r∏m−1

k=0 nk

p̂ is an unbiased estimator of p for ANY choice of intermediate
sets.

For a good choice of intermediate sets, the total computational
cost of the estimation is proportional to (log p)2 instead of p−1!
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PART II

Rare Event Simulation for the Stationary Distribution
of a Markov Chain
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Stationary Markov Chains

Let X = (Xn)n∈N be an Rd -valued, time-discrete Markov chain with
stationary (invariant) measure µ, that is, as n→∞,

Xn  X∞ ∼ µ.

Context: numerical solutions to SDEs:

dXt = f (Xt)dt + g(Xt)dWt

and
Xn+1 = Xn + f (Xn)h + g(Xn)

√
h∆Wn

We want to estimate µ(B) when µ(B)� 1. From Ergodic Theorem,
for any set B:

µ(B) = lim
N→∞

1

N

N∑
n=1

1{Xn ∈ B}.
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Recurrent Structure of a Markov Chain

Consider the following decomposition of a Markov chain:

I Choose a set A ⊂ Rd , with µ(A) ∈ (0, 1).

I Let Sk be consecutive inwards crossings of set A, with S−1 = 0,

Sk := inf{n > Sk−1 : Xn−1 6∈ A,Xn ∈ A}.

I Let Ck be a path within kth cycle, i.e.

Ck :=
(
Xn : Sk−1 ≤ n < Sk

)
.

I We distinguish the cycle length and origin

Lk := Sk − Sk−1, XA
k := XSk−1

Note: Assuming the chain is ‘sufficiently nice’, we have ELk <∞.
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A 

B 

The cycle begins at P1 and ends at P5.



14

Recurrent Structure of a Markov Chain

In the stationary regime, the cycles C1, C2, . . . are identically distributed.

Define the time spent in set B within a cycle:

Rk :=

Sk−1∑
n=Sk−1

1{Xn ∈ B}.

The quantity of interest p = µ(B) can be expressed as:

p =
ER1

EL1
.

I Estimation of EL1 is easy (Monte Carlo).
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Estimation of ER1

Notice that

TB := ER1 = P(τB < τ inA ) · E(R1 |R1 > 0)

This fits in the framework of MLS with an extra stage with
splitting factor nm!

T̂B :=
rm∏m−1

k=0 nk
·
∑nmrm

j=1 R̂
(j)
+

nmrm

T̂B is an unbiased estimator for ER1!

For a good choice of intermediate sets and set A, the
computational cost is proportional to (log p)2!
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Assumptions leading to optimality

The study of efficiency of the algorithm is intractable for a general choice
of intermediate sets. Recall that

τk = inf{n > 0 : Xn ∈ Bk}, Dk := {τk < τA}

We assume the following:

(I) for all k ∈ {1, . . . ,m − 1}, for all Xτk ,

P(Dk+1 |Dk ,Xτk ) ≡ P(Dk+1 |Dk)

(II) for all XA
1 ,

P(τB < τA |XA
1 ) ≡ P(τB < τA)

(III) for all cycle origins XτB ,(
R1 |R1 > 0,XτB

) d
= (R1 |R1 > 0) =: R+,
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Numerical Example: Franzke (2012) Model
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Franzke (2012) Model

dx1 = µ
(
− x2(L12 + a1x1 + a2x2) + d1x1 + F1

+ L13y1 + B1
123x2y1 + (B2

131 + B2
113)x1y1

)
dt

dx2 = µ
(

+ x1(L21 + a1x1 + a2x2) + d2x2 + F2

+ L24y2 + B1
213x1y1 + (B3

242 + B3
224)x2y2

)
dt

dy1 = µ
(
− L13x1 + B1

312x1x2 + B2
311x

2
1 + F3 − γ1

ε y1
)
dt + σ1√

ε
dW1

dy2 = µ
(
− L24x2 + B3

422x2x2 + F4 − γ2
ε y2
)
dt + σ2√

ε
dW2

p = lim
n→∞

P(x1 > u) = µ(x1 > u)
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Franzke (2011) Model
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Results

u 14 15 16 17.5 18.5

p̂ 1.08 · 10−3 1.99 · 10−4 3.00 · 10−5 1.14 · 10−6 9.78 · 10−8

Eff(p̂) 1.9 8.6 32.1 269.9 1521.8

Table: RMS algorithm applied to Franzke (2012) model. Parameters:
A = {x1 ≤ 7.9}, B = {x1 > u}. Importance function is H(x) = x1

u
. The

relative errors are below 1%.

This approach is orders of magnitude faster than Monte Carlo!



23

Conclusions

I We presented an algorithm for the estimation of rare events
associated with the stationary distribution of a Markov chain.

I Implementation of the algorithm does not require any knowledge of
the system under study – it can be applied to ‘black-box’
models.

I Open question: good choice of the recurrency set A.
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Finishing remarks

Choice of the recurrency set A:

(i) Recall that A should be such that for all cycle origins XA
1 :

P(τB < τA |XA
1 ) ≡ P(τB < τA)

(ii) At the same time A should be such that EL1 is not ‘too large’, so A
should not be ‘too small’ (µ(A) ≈ 0) nor ‘too big’ (µ(A) ≈ 1).

Numerical implementation:
1. Estimate EL1 using Monte Carlo method. Store the locations of the

cycle origins in the set S := {XS0 ,XS1 , . . .}.
2. Estimate TB using Multilevel Splitting. Bootstrap cycle origins from

the set S.
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Optimal Parameters

We aim to minimize the computational time of the algorithm under the
constraint RE2(T̂B) = VarTB

(ET̂B )2
< q2 for a chosen q > 0.

m = c | log p|,

pk =
2c − 1

2c
≈ 1

5
, k ∈ {1, . . . ,m},

nk = 1/pk+1 ≈ 5, k ∈ {1, . . . ,m − 1},

nm = RE(R+) · 2c√
2c − 1

,

n0 =
1

q
√

2c − 1
·
(
c | log p|√

2c − 1
+ RE(R+)

)
,

W (T̂B) ∝ 1

q

(
c | log p|√

2c − 1
+ RE(R+)

)2

.

with c ≈ 0.6275 solving exp(1/c) = 2c/(2c − 1).
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How do we choose the importance function?

Let H : Rd −→ [0, 1] be the importance function and for levels
0 = l0 < l1 < . . . < lm = 1 we put

Bk := {x ∈ Rd : H(x) ≥ lk}.

Ideal importance function H should satisfy:

H(x) ≥ H(y) =⇒ Px(τB < τA) ≥ Py (τB < τA).

In particular
H(x) := P(τB < τA |X0 = x)

satisfies the above and so is

Hg (x) := g(H(x))

for any increasing function g .


