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• ℳ: Model that often depends on the numerical solution of a PDE system

• 𝑿 = 𝑋!; 𝑋"; … ; 𝑋# : Vector of input random variables with joint PDF 𝑓(𝒙)

• The model allows extrapolation to extreme situations where data is not 
available

Model-based prediction
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Engineering 
Model ℳ

Input Response
𝑿 𝑌 = ℳ 𝑿



Reliability analysis

Performance function 𝑔 𝒙 = -𝑔 ∘ℳ 𝒙 ; Failure event 𝐹 = 𝑔 𝑿 ≤ 0

Probability of failure:

𝑝$: = ℙ 𝐹 = 5
% 𝒙 '(

𝑓 𝒙 𝑑𝒙 = E)[𝐼 𝑔 𝑿 ≤ 0 ]

	
x1

x2

𝑔 𝒙 = 0

𝑓(𝒙)
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Reliability methods

• Approximation methods based on Taylor series: FORM/SORM
• Sampling methods, e.g. splitting, subset simulation, cross-entropy method, line 

sampling, sequential importance sampling
• Surrogate-based reliability methods, e.g. Gaussian process (kriging), polynomial 

chaos expansion (PCE), neural networks, low-rank tensors
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Importance sampling

Probability of failure
𝑝$ = E*[𝐼 𝑔 𝑿 ≤ 0 𝑤 𝑿 ]

Importance sampling density: ℎ 𝒙

Importance weight function: 𝑤 𝒙 = ) 𝒙
* 𝒙

Estimate of probability

𝑝̂$ = >E* 𝐼 𝑔 𝑿 ≤ 0 𝑤 𝑿 =
1
𝑁A
+,!

-

𝐼 𝑔 𝒙+ ≤ 0 𝑤 𝒙+ , 𝒙+~ℎ ⋅

Optimal (zero variance) IS density

ℎ∗ 𝒙 =
1
𝑝$
𝐼 𝑔 𝒙 ≤ 0 𝑓 𝒙
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Cross-entropy (CE) method [Rubinstein 1997]

Define a family of parametric densities ℎ 𝒙; 𝒗 , 𝒗 ∈ 𝒱
Find parameters 𝒗 by minimizing the Kullback-Leibler (K-L) divergence between 
ℎ∗ 𝒙 and ℎ 𝒙; 𝒗 :

𝝂∗ = argmin
𝒒∈𝒱

𝐷 ℎ∗, ℎ ⋅; 𝒒

K-L divergence:

𝐷 ℎ∗, ℎ ⋅; 𝒒 = E*∗ ln
ℎ∗ 𝑿
ℎ 𝑿; 𝒒

Substituting the density ℎ∗, we get
𝝂∗ = argmax

𝒒∈𝒱
E) 𝐼 𝑔 𝑿 ≤ 0 ln ℎ 𝑿; 𝒒

Stochastic counterpart:

S𝝂 = argmax
𝒒∈𝒱

A
+,!

-"#

𝐼 𝑔 𝒙+ ≤ 0 ln ℎ 𝒙+; 𝒒 , 𝒙+~𝑓 ⋅
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Multilevel CE method

Define a sequence of intermediate events 
𝑔 𝑿 ≤ 𝛾2 , 𝑡 = 1, … , 𝑇 with   𝛾! > ⋯ > 𝛾3 = 0

and a corresponding sequence of parameter vectors S𝒗!, … , S𝒗3.

• Select 𝛾2 such that for a not too small 𝑝∗ (e.g., 𝑝∗ = 0.1)

ℙ* ⋅;6𝒗$%& 𝑔 𝑿 ≤ 𝛾2 ≥ 𝑝∗

• Solve the CE optimization program for estimating Pr 𝑔 𝑿 ≤ 𝛾2

S𝒗2 = argmax
𝒗∈𝒱

A
+,!

-"#

𝐼 𝑔 𝒙+ ≤ 𝛾2 ln ℎ 𝒙+; 𝒒 𝑤2 𝒙+; S𝒗28! , 𝒙+~ℎ ⋅; S𝒗28!

where 𝑤2 𝒙+; S𝒗28! = ) 𝒙'
* 𝒙';6𝒗$%&
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Improved CE (iCE) method [Papaioannou et al. 2019]

The multilevel CE method solves the CE optimization problem for a series of target 
densities ℎ2 , 𝑡 = 1, … , 𝑇 , with

ℎ2 𝒙 ∝ 𝐼 𝑔 𝒙 ≤ 𝛾2 𝑓 𝒙 with   𝛾! > ⋯ > 𝛾3 = 0

Idea: Employ an alternative sequence of densities that makes better use of the 
intermediate samples

Define the intermediate densities s.t.

ℎ2 𝒙 ∝ Φ −
𝑔 𝒙
𝜎2

𝑓 𝒙 with 𝜎! > ⋯ > 𝜎3 > 0

where Φ ⋅ is the standard normal CDF
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iCE density sequence

ℎ2 𝒙 ∝ Φ −
𝑔 𝒙
𝜎2

𝑓 𝒙 with 𝜎! > ⋯ > 𝜎3 > 0
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iCE algorithm

• Select 𝜎2 such that for a target 𝛿∗ (e.g., 𝛿∗ = 1.5)

𝜎2 = argmin
9∈ (,9'%&

b𝛿;<$ 𝜎 − 𝛿∗ "

• Solve the CE optimization program with target density ℎ2 𝒙 ∝ Φ − % 𝒙
9$

𝑓 𝒙

S𝒗2 = argmax
𝒗∈𝒱

A
+,!

-"#

ln ℎ 𝒙+; 𝒒 c𝑤2 𝒙+; S𝒗28! , 𝒙+~ℎ ⋅; S𝒗28!

where c𝑤2 𝒙+; S𝒗28! = = 8% 𝒙' /9$ ) 𝒙'
* 𝒙';6𝒗$%&
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Choice of the parametric family
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• Employ mixture models to treat multimodal failure domains
• Solution of the CE optimization problem with the EM algorithm [Geyer et a. 2019]

• Gaussian mixture model with # of parameters: 𝐾𝑛 𝑛 + 3 /2

ℎ 𝒙; 𝒗 =A
?,!

@

𝜋?𝜑 𝒙|𝝁? , 𝜮?
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A parametric family in high dimensions
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• Assume that 𝑿 is i.i.d. and express 𝑿 in polar coordinates: 𝑿 = 𝑅𝑨

• Distance concentration phenomenon: 𝑅/E 𝑅 →
ℙ
1, as 𝑛 → ∞

• von Mises-Fisher-Nakagami (vMFN) distribution model [Papaioannou et al. 2019]

ℎ 𝑟, 𝒂; 𝒗 = 𝑓B 𝑟; 𝑚, Ω 𝑓CDE 𝒂; 𝝁, 𝜅

Optimal density ℎ∗ 𝐱 Fitted density ℎ 𝒙; ,𝒗



A parametric family in high dimensions
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• Assume that 𝑿 is i.i.d. and express 𝑿 in polar coordinates: 𝑿 = 𝑅𝑨

• Distance concentration phenomenon: 𝑅/E 𝑅 →
ℙ
1, as 𝑛 → ∞

• von Mises-Fisher-Nakagami (vMFN) distribution model [Papaioannou et al. 2019]

• vMFN mixture model with # of parameters: 𝐾 𝑛 + 3

ℎ 𝑟, 𝒂; 𝒗 =A
?,!

@

𝜋?𝑓B 𝑟; 𝑚? , ΩF 𝑓CDE 𝒂; 𝝁? , 𝜅?



Nonlinear SDOF oscillator
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Equation of motion:
𝑚𝑢̈(𝑡) + 𝑐𝑢̇(𝑡) + 𝑘 𝛼𝑢 𝑡 + 1 − 𝛼 𝑢G𝑧 𝑡 = 𝑓 𝑡

Bouc-Wen hysteresis law:

𝑧̇ 𝑡 =
1
𝑢G

𝐴𝑢̇ 𝑡 − 𝛽 𝑢̇ 𝑡 𝑧 𝑡 H#8!𝑧 𝑡 − 𝛾𝑢̇ 𝑡 𝑧 𝑡 H#

Discretized white noise load process:

𝑓 𝑡 = −𝑚𝜎A
?,!

⁄# "

𝑋? cos 𝜔?𝑡 + 𝑋 ⁄# "J? sin 𝜔?𝑡

with 𝜔? = 𝑖Δ𝜔; Δ𝜔 = ⁄30𝜋 𝑛 (cut-off frequency 𝜔KLM = 15𝜋); 𝜎 = 2𝑆Δ𝜔; 𝑆 =
0.005 ⁄m" sN; 𝑿~𝒩(𝟎, 𝑰)

Performance function: 𝑔 𝒙 = 𝑢G − 𝑢(8s)



Nonlinear SDOF oscillator (II)
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Number of random variables 𝑛 = 150; vMFN distribution model
Number of samples per level 𝑁OP = 2000 and 𝑁 = 𝑁OP
Reference probability 𝑝$ = 6.28×108Q

Vary 𝑝∗ for standard CE and 𝛿∗ for iCE

103 Ntot
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Bayesian analysis
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Assume that data 𝒅 become available; 𝒅 is described by the likelihood 𝐿 𝒙 𝒅
Posterior density of the random variables:

𝑓𝒅(𝒙) =
1
𝑐P
𝐿 𝒙 𝒅 𝑓 𝒙

Evidence (or marginal likelihood) 
𝑐P = E) 𝐿 𝑿 𝒅

Updated (posterior) failure probability:

𝑝$|𝒅: = ℙ 𝐹|𝒅 = E)𝒅 𝐼 𝑔 𝑿 ≤ 0 =
E) 𝐼 𝑔 𝑿 ≤ 0 𝐿 𝑿 𝒅

E) 𝐿 𝑿 𝒅



iCE for reliability updating [Kanjilal et al., in prep]
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Estimation of denominator (evidence)
Optimal (zero variance) IS density

ℎT∗ 𝒙 = 𝑓𝒅(𝒙) =
1
𝑐P
𝐿 𝒙 𝒅 𝑓 𝒙

Apply iCE with intermediate target densities defined as

ℎT,2 𝒙 ∝ 𝐿 𝒙 𝒅 U$𝑓 𝒙 with   𝛽! < ⋯ < 𝛽3) = 1

Estimation of numerator
Optimal (zero variance) IS density

ℎ-∗ 𝒙 ∝ 𝐼 𝑔 𝒙 ≤ 0 𝐿 𝒙 𝒅 𝑓 𝒙

Apply iCE with intermediate target densities defined as

ℎ-,2 𝒙 ∝ Φ −
𝑔 𝒙
𝜎2

𝐿 𝒙 𝒅 𝑓 𝒙 with 𝜎! > ⋯ > 𝜎3* > 0



Fatigue crack growth
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Rate of crack growth of an infinite plate – Paris’ law:
d𝑎 𝑛
d𝑛 = 𝐶 Δ𝑆 𝜋𝑎 𝑛

V

which can be solved to give:

𝑎 𝑛 = 1 −
𝑚
2 𝐶Δ𝑆V𝜋

V
" 𝑛 + 𝑎(

!8V"

!
!8V"

The number of stress cycles to reach a critical length 𝑎W:

𝑛W =
2

𝑚 − 2 𝐶 𝜋∆𝑆 V
1

𝑎(
V8"
"
−

1

𝑎W
V8"
"

, 𝑚 ≠ 2

Performance function: 𝑔 = 𝑛W − 𝑛); with 𝑛) = 5×10X and 𝑎W = 50mm



Fatigue crack growth (II)
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Prior distribution of model parameters 𝑿 = 𝑎(; Δ𝑆; ln 𝐶 ;𝑚

The crack size is measured at 𝑛! = 10X and 𝑛" = 2×10X as 𝑎Y,! = 0.8mm,
𝑎Y," = 1.1mm
Likelihood function:

𝐿 𝒙 𝒅 ∝ exp −
1
2A
?,!

"
𝑎 𝒙, 𝑛? − 𝑎Y.?

𝜎Y

"

with 𝜎Y = 0.2mm

Variable Distribution Mean St. Dev. Correlation
𝑎* mm Exponential 1 1
Δ𝑆 Nmm"+ Normal 60 10
ln 𝐶 ,𝑚 − Bi-normal [−33; 3.5] [0.47; 0.3] −0.9



Fatigue crack growth (III)
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Results for 𝑁 = 500, 𝛿∗ = 1.5; Gaussian distribution model

Reference probability: 𝑝$|𝒅 = 4.9×10",

𝑁-.
125 250 500

𝑝̂/|𝒅 ×10", 4.70 4.80 4.85
𝛿 &'!|𝒅 0.23 0.10 0.08
𝑇2 2 2 2
𝑇3 7.3 6.3 5.9
𝑁()( 2038 2837 4443



Fatigue crack growth (III)
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Results for 𝛿∗ = 1.5; Gaussian distribution model

Reference probability: 𝑝$|𝒅 = 4.9×10",

𝑁

𝛿 &'!|𝒅



Summary

• iCE method employs a sequence of smooth approximations of the optimal IS 
• The modified sequence enables efficient use of the intermediate samples to 

solve the CE optimization problems
• vMFN mixture distribution model extends the application of the CE method to 

high dimensional problems
• Application of the iCE method to Bayesian analysis of rare events
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