Engineering Risk Analysis Group Department of Civil, Geo and Environmental Engineering Technische Universität München

The cross-entropy method for model-based pre and updating of rare events

RESIM 2021, 19 May 2021

Iason Papaioannou

Engineering Risk Analysis Group, TU München

E-mail: iason.papaioannou@tum.de

Joint Work with: Sebastian Geyer, Oindrila Kanjilal and Daniel Straub

Model-based prediction

- \mathcal{M} : Model that often depends on the numerical solution of a PDE system
- $X = [X_1; X_2; ...; X_n]$: Vector of input random variables with joint PDF $f(x)$
- The model allows extrapolation to extreme situations where data is not available

Reliability analysis

Performance function $g(x) = \tilde{g} \circ \mathcal{M}(x)$; Failure event $F = \{g(X) \le 0\}$

Probability of failure:

$$
p_F := \mathbb{P}(F) = \int_{g(x)\leq 0} f(x)dx = \mathbb{E}_f[I(g(X)\leq 0)]
$$

Reliability methods

- Approximation methods based on Taylor series: FORM/SORM
- Sampling methods, e.g. splitting, subset simulation, cross-entropy method, line sampling, sequential importance sampling
- Surrogate-based reliability methods, e.g. Gaussian process (kriging), polynomial chaos expansion (PCE), neural networks, low-rank tensors

Importance sampling

Probability of failure

 $p_F = E_h[I(g(X) \le 0)w(X)]$

Importance sampling density: $h(x)$

Importance weight function: $w(x) = \frac{f(x)}{h(x)}$ $h(x)$

Estimate of probability

$$
\hat{p}_F = \widehat{E}_h[I(g(X) \le 0)w(X)] = \frac{1}{N} \sum_{k=1}^N I(g(x_k) \le 0)w(x_k), \qquad x_k \sim h(\cdot)
$$

Optimal (zero variance) IS density

$$
h^*(x) = \frac{1}{p_F} I(g(x) \le 0) f(x)
$$

Cross-entropy (CE) method [Rubinstein 1997]

$$
\boldsymbol{\nu}^* = \operatorname*{argmin}_{\boldsymbol{q}\in\mathcal{V}} D\big(h^*, h(\cdot; \boldsymbol{q})\big)
$$

K-L divergence:

$$
D\big(h^*, h(\cdot; \boldsymbol{q})\big) = \mathrm{E}_{h^*}\bigg[\ln\bigg(\frac{h^*(X)}{h(X; \boldsymbol{q})}\bigg)\bigg]
$$

Substituting the density h^* , we get

$$
\boldsymbol{\nu}^* = \operatorname*{argmax}_{\boldsymbol{q} \in \mathcal{V}} \mathrm{E}_f \big[I(g(\boldsymbol{X}) \le 0) \ln \big(h(\boldsymbol{X}; \boldsymbol{q}) \big) \big]
$$

Stochastic counterpart:

$$
\widehat{\mathbf{\nu}} = \underset{\mathbf{q} \in \mathcal{V}}{\operatorname{argmax}} \sum_{k=1}^{N_{CE}} I(g(\mathbf{x}_k) \le 0) \ln(h(\mathbf{x}_k; \mathbf{q})) \,, \qquad \mathbf{x}_k \sim f(\cdot)
$$

Multilevel CE method

Define a sequence of intermediate events

$$
\{g(X) \le \gamma_t\}, t = 1, \dots, T \quad \text{with} \quad \gamma_1 > \dots > \gamma_T = 0
$$

and a corresponding sequence of parameter vectors $\hat{\bm{v}}_1, ..., \hat{\bm{v}}_T$.

• Select γ_t such that for a not too small p^* (e.g., $p^* = 0.1$)

$$
\mathbb{P}_{h(\cdot;\widehat{v}_{t-1})}(g(X)\leq \gamma_t)\geq p^*
$$

• Solve the CE optimization program for estimating $Pr(g(X) \leq \gamma_t)$

$$
\widehat{\nu}_t = \underset{\nu \in \mathcal{V}}{\operatorname{argmax}} \sum_{k=1}^{N_{CE}} I(g(\mathbf{x}_k) \leq \gamma_t) \ln\big(h(\mathbf{x}_k; \mathbf{q})\big) w_t(\mathbf{x}_k; \widehat{\nu}_{t-1}), \qquad \mathbf{x}_k \sim h(\cdot; \widehat{\nu}_{t-1})
$$

where $w_t(\bm{x}_k; \widehat{\bm{v}}_{t-1}) = \frac{f(\bm{x}_k)}{h(\bm{x}_k; \widehat{\bm{x}}_k)}$ $h(x_k;\widehat{v}_{t-1})$

Improved CE (iCE) method [Papaioannou et al. 2019]

The multilevel CE method solves the CE optimization problem for a series of target densities $\{h_t, t = 1, ..., T\}$, with

```
h_t(x) \propto I(g(x) \leq \gamma_t) f(x) with \gamma_1 > \cdots > \gamma_T = 0
```
Idea: Employ an alternative sequence of densities that makes better use of the intermediate samples

Define the intermediate densities s.t.

$$
h_t(x) \propto \Phi\left(-\frac{g(x)}{\sigma_t}\right) f(x) \quad \text{with} \quad \sigma_1 > \dots > \sigma_T > 0
$$

where $\Phi(\cdot)$ is the standard normal CDF

iCE density sequence

iCE algorithm

Select σ_t such that for a target δ^* (e.g., $\delta^* = 1.5$) \bullet

$$
\sigma_t = \underset{\sigma \in (0, \sigma_{k-1})}{\operatorname{argmin}} \left(\hat{\delta}_{\widetilde{w}_t}(\sigma) - \delta^* \right)^2
$$

Solve the CE optimization program with target density $h_t(x) \propto \Phi\left(-\frac{g(x)}{\sigma_t}\right) f(x)$ \bullet

$$
\widehat{\boldsymbol{v}}_t = \underset{\boldsymbol{v} \in \mathcal{V}}{\operatorname{argmax}} \sum_{k=1}^{N_{CE}} \ln\big(h(\boldsymbol{x}_k; \boldsymbol{q})\big) \widetilde{w}_t(\boldsymbol{x}_k; \widehat{\boldsymbol{v}}_{t-1}), \qquad \boldsymbol{x}_k \sim h(\cdot; \widehat{\boldsymbol{v}}_{t-1})
$$

where $\widetilde{w}_t(x_k; \widehat{v}_{t-1}) = \frac{\Phi(-g(x_k)/\sigma_t)f(x_k)}{h(x_k;\widehat{v}_{t-1})}$

Choice of the parametric family

- Solution of the CE optimization problem with the EM algorithm [Geyer et a. 2019]
- Gaussian mixture model with # of parameters: $Kn(n+3)/2$

$$
h(\pmb{x}; \pmb{v}) = \sum_{i=1}^K \pi_i \varphi(\pmb{x} | \pmb{\mu}_i, \pmb{\Sigma}_i)
$$

A parametric family in high dimensions

- Assume that X is i.i.d. and express X in polar coordinates: $X = RA$
- Distance concentration phenomenon: $R/\mathrm{E}[R] \rightarrow$ ℙ 1, as $n \to \infty$
- von Mises-Fisher-Nakagami (vMFN) distribution model [Papaioannou et al. 2019]

 $h(r, a; v) = f_{\rm N}(r; [m, \Omega]) f_{\rm vMF}(a; [\mu, \kappa])$

A parametric family in high dimensions

- Assume that X is i.i.d. and express X in polar coordinates: $X = RA$
- Distance concentration phenomenon: $R/\mathrm{E}[R] \rightarrow$ ℙ 1, as $n \to \infty$
- von Mises-Fisher-Nakagami (vMFN) distribution model [Papaioannou et al. 2019]
- vMFN mixture model with # of parameters: $K(n + 3)$

$$
h(r, \boldsymbol{a}; \boldsymbol{v}) = \sum_{i=1}^{K} \pi_i f_N(r; [m_i, \Omega_i]) f_{\text{vMF}}(\boldsymbol{a}; [\boldsymbol{\mu}_i, \kappa_i])
$$

Nonlinear SDOF oscillator

Equation of motion:

$$
m\ddot{u}(t) + c\dot{u}(t) + k\big[\alpha u(t) + (1-\alpha)u_y z(t)\big] = f(t)
$$

Bouc-Wen hysteresis law:

$$
\dot{z}(t) = \frac{1}{u_y} \left[A \dot{u}(t) - \beta |\dot{u}(t)| |z(t)|^{\tilde{n}-1} z(t) - \gamma \dot{u}(t) |z(t)|^{\tilde{n}} \right]
$$

Discretized white noise load process:

$$
f(t) = -m\sigma \sum_{i=1}^{n/2} \left[X_i \cos(\omega_i t) + X_{n/2+i} \sin(\omega_i t) \right]
$$

with $\omega_i = i \Delta \omega$; $\Delta \omega = 30\pi/n$ (cut-off frequency $\omega_{\text{cut}} = 15\pi$); $\sigma = \sqrt{2S\Delta \omega}$; $S =$ $0.005 \,\mathrm{m^2/s^3}; X \sim \mathcal{N}(0, I)$

Performance function: $g(x) = u_y - u(8s)$

Nonlinear SDOF oscillator (II)

Number of random variables $n = 150$; vMFN distribution model Number of samples per level $N_{CE} = 2000$ and $N = N_{CE}$ Reference probability $p_F = 6.28 \times 10^{-4}$

Vary p^* for standard CE and δ^* for iCE

Bayesian analysis

Assume that data d become available; d is described by the likelihood $L(x|d)$ Posterior density of the random variables:

$$
f_{d}(x) = \frac{1}{c_{E}} L(x|d) f(x)
$$

Evidence (or marginal likelihood)

$$
c_E = \mathrm{E}_f[L(X|\boldsymbol{d})]
$$

Updated (posterior) failure probability:

$$
p_{F|d} = \mathbb{P}(F|d) = \mathbb{E}_{f_d}[I(g(X) \le 0)] = \frac{\mathbb{E}_f[I(g(X) \le 0)L(X|d)]}{\mathbb{E}_f[L(X|d)]}
$$

iCE for reliability updating [Kanjilal et al., in prep]

Estimation of denominator (evidence)

Optimal (zero variance) IS density

$$
h_D^*(x) = f_d(x) = \frac{1}{c_E} L(x|d) f(x)
$$

Apply iCE with intermediate target densities defined as

$$
h_{D,t}(x) \propto L(x|d)^{\beta_t} f(x) \quad \text{with} \quad \beta_1 < \cdots < \beta_{T_D} = 1
$$

Estimation of numerator

Optimal (zero variance) IS density

 $h_N^*(x) \propto I(g(x) \leq 0)L(x|d)f(x)$

Apply iCE with intermediate target densities defined as

$$
h_{N,t}(x) \propto \Phi\left(-\frac{g(x)}{\sigma_t}\right) L(x|d) f(x) \quad \text{with} \quad \sigma_1 > \dots > \sigma_{T_N} > 0
$$

Fatigue crack growth

Rate of crack growth of an infinite plate – Paris' law:

$$
\frac{da(n)}{dn} = C \left[\Delta S \sqrt{\pi a(n)} \right]^m
$$

which can be solved to give:

$$
a(n) = \left[\left(1 - \frac{m}{2} \right) C \Delta S^m \pi^{\frac{m}{2}} n + a_0^{\left(1 - \frac{m}{2} \right)} \right]^{\frac{1}{1 - \frac{m}{2}}}
$$

The number of stress cycles to reach a critical length a_c :

$$
n_c = \frac{2}{(m-2)C(\sqrt{\pi}\Delta S)^m} \left[\frac{1}{a_0^{\frac{m-2}{2}}} - \frac{1}{a_c^{\frac{m-2}{2}}} \right], \quad m \neq 2
$$

Performance function: $g = n_c - n_f$; with $n_f = 5 \times 10^5$ and $a_c = 50$ mm

Fatigue crack growth (II)

Prior distribution of model parameters $X = [a_0; \Delta S; \ln C; m]$

The crack size is measured at $n_1 = 10^5$ and $n_2 = 2 \times 10^5$ as $a_{m,1} = 0.8$ mm, $a_{m,2} = 1.1$ mm Likelihood function:

$$
L(\mathbf{x}|\mathbf{d}) \propto \exp\left(-\frac{1}{2}\sum_{i=1}^{2}\left(\frac{a(\mathbf{x},n_i)-a_{\mathrm{m}.i}}{\sigma_{\mathrm{m}}}\right)^2\right)
$$

with $\sigma_{\rm m} = 0.2$ mm

Fatigue crack growth (III)

Results for $N = 500$, $\delta^* = 1.5$; Gaussian distribution model Reference probability: $p_{F|d} = 4.9 \times 10^{-4}$

Fatigue crack growth (III)

Results for $\delta^* = 1.5$; Gaussian distribution model Reference probability: $p_{F|d} = 4.9 \times 10^{-4}$

Summary

- iCE method employs a sequence of smooth approximations of the optimal IS
- The modified sequence enables efficient use of the intermediate samples to solve the CE optimization problems
- vMFN mixture distribution model extends the application of the CE method to high dimensional problems
- Application of the iCE method to Bayesian analysis of rare events

References

CE and iCE method

- § Geyer, S., Papaioannou, I., & Straub, D. (2019). Cross entropy-based importance sampling using Gaussian densities revisited. *Structural Safety*, *76*, 15-27.
- Papaioannou, I., Geyer, S., & Straub, D. (2019). Improved cross entropy-based importance sampling with a flexible mixture model. *Reliability Engineering & System Safety*, *191*, 106564.
- Kanjilal, O., Papaioannou, I., & Straub, D. Structural reliability updating by cross entropy-based importance sampling. To appear in *Proc. 13th International Conference on Structural Safety and Reliability (ICOSSAR 2021)*.

Further developments of iCE

- Ehre, M., Papaioannou, I., Willcox, K. E., & Straub, D. (2021). Conditional reliability analysis in high dimensions based on controlled mixture importance sampling and information reuse. *Computer Methods in Applied Mechanics and Engineering*, *381*, 113826.
- Uribe, F., Papaioannou, I., Marzouk, Y. M., & Straub, D. (2021). Cross-entropy-based importance sampling with failure-informed dimension reduction for rare event simulation. To appear in *SIAM/ASA Journal on Uncertainty Quantification*. *arXiv preprint arXiv:2006.05496*.
- Kanjilal, O., Papaioannou, I., & Straub, D. (2021). Cross entropy-based importance sampling for firstpassage probability estimation of randomly excited linear structures with parameter uncertainty. *Structural Safety*, *91*, 102090.