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Model-based prediction
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Y = M(X)

« M Model that often depends on the numerical solution of a PDE system

« X = [Xy;X,;...; X,,]: Vector of input random variables with joint PDF f(x)

 The model allows extrapolation to extreme situations where data is not

available



Reliability analysis
Performance function g(x) = G c M (x); Failure event F = {g(X) < 0}

Probability of failure:

ppi= P(F) = j | J@dx=E (g0 <0
g(x)=<




Reliability methods T

« Approximation methods based on Taylor series: FORM/SORM

« Sampling methods, e.g. splitting, subset simulation, cross-entropy method, line
sampling, sequential importance sampling

« Surrogate-based reliability methods, e.g. Gaussian process (kriging), polynomial
chaos expansion (PCE), neural networks, low-rank tensors



Importance sampling

Probability of failure
pr = Ep[I(g(X) < 0)w(X)]

Importance sampling density: h(x)

f(x)

Importance weight function: w(x) = v

Estimate of probability

pr = Eall(g(0) < w(X)] = Zl(g(xk><0)w<xk>, xi~h()

Optimal (zero variance) IS density

1
h*(x) =—1(g(x) < 0)f(x)
PF
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Cross-entropy (CE) method [rubinstein 1997]

Define a family of parametric densities h(x;v), v eV
Find parameters v by minimizing the Kullback-Leibler (K-L) divergence between
h*(x) and h(x; v):

v* = argmin D(h*, h(; q))
qeV

K-L divergence:

o h*(X)
D(h*,h(; q)) = Ep: [ln (h(X; 60)]

Substituting the density h*, we get
V" = argmax Ef[I(g(X) <0) ln(h(X; q))]
qev

Stochastic counterpart:

NcE

¥ = argmax 2 I(gx) <0 In(h(x;q),  x~f()
€V 1=



Multilevel CE method

Define a sequence of intermediate events
X)) <y }t=1,.,T with y;>-->yr =0
and a corresponding sequence of parameter vectors v4, ..., V.

« Select y; such that for a not too small p* (e.g., p* = 0.1)
Pres,_n(@X) <vye) 2p°

« Solve the CE optimization program for estimating Pr(g(X) < y;)

Ncg

D, = argmax ) 1(g(x) < ¥ (A @)W, (i Prr),  X~h(59py)
k=1

vey

f(xk)

where w,(xy; V,_,) = h(eriPei)



Improved CE (lCE) method [Papaioannou et al. 2019] TI'ITI

The multilevel CE method solves the CE optimization problem for a series of target
densities {h;,t =1, ..., T}, with

he(x) < I(g(x) <y )f(x) with y; > >yr =0

Idea: Employ an alternative sequence of densities that makes better use of the
intermediate samples

Define the intermediate densities s.t.

g(x)

Ot

h:(x) « CI><— >f(x) with o, >-->0; >0

where ®(-) is the standard normal CDF



ICE density sequence
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ICE algorithm

« Select g; such that for a target §* (e.g., 6* = 1.5)

0, = argmin ((Swt(a) — 0" )

0€(0,0k-1)

« Solve the CE optimization program with target density h;(x) o« @ (

Ncg

v = argmaxz ln(h(xk; Q))Wt(xki Vi_1), X~h(; V1)

vey

D(—g(xg)/oe) f(xx)
h(xXk;V¢—1)

where W, (xy; Vi_q1) =

22) f o)
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Choice of the parametric family

* Employ mixture models to treat multimodal failure domains
« Solution of the CE optimization problem with the EM algorithm [Geyer et a. 2019]
« Gaussian mixture model with # of parameters: Kn(n + 3)/2

K

h(x;v) = Z (x|, Z;)

=1

Optimal density h*(x) Fitted density h(x; D)

1



A parametric family in high dimensions T

* Assume that X is i.i.d. and express X in polar coordinates: X = RA

P
« Distance concentration phenomenon: R/E[R] - 1,asn — o

« von Mises-Fisher-Nakagami (VMFN) distribution model [Papaioannou et al. 2019]

h(r,a;v) = fy(r; Im, QD fomr(a; (1, x])

Optimal density h*(x) Fitted density h(x; D)
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A parametric family in high dimensions

Assume that X is i.i.d. and express X in polar coordinates: X = RA

P
Distance concentration phenomenon: R/E[R] - 1,as n —» o

von Mises-Fisher-Nakagami (VMFN) distribution model [Papaioannou et al. 2019]
VMFN mixture model with # of parameters: K(n + 3)

K

h(r, @) = ) mufuCrs [, D) fonae (a5 11, 111)

i=1
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Nonlinear SDOF oscillator

Equation of motion:
mii(t) + cu(t) + k[au(t) + (1 - a)uyz(t)] = f(t)

Bouc-Wen hysteresis law:

1 8 y
2(t) = — [Au(®) = Bla@®)12()1" " 2(¢) — yu(®)|z(t)|"]
y

Discretized white noise load process:
n/2
£ = —maZ[Xi c0s(W;t) + Xn24: sin(w;t)]
=1

with w; = iAw; Aw = 30m/n (cut-off frequency w¢y = 157); 0 = V2SAw; S =
0.005m?/s3; X~N(0,1)

Performance function: g(x) = u, — u(8s)

14



Nonlinear SDOF oscillator (I1)

Number of random variables n = 150; vMFN distribution model
Number of samples per level Nop; = 2000 and N = Ng
Reference probability pr = 6.28x1074

Vary p* for standard CE and 6™ for iCE

0.5 —
0.4] P =01 - CE-vMFN
5. 03 5*=4.5 §*=1"
PF '
0.2} p*=0.4
/
0.1 iCE-vMFN . o
0 1 1 1 1 1 MR | 1 1 1 1 1 TR |
10° 10* 10°
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Bayesian analysis

Assume that data d become available; d is described by the likelihood L(x|d)
Posterior density of the random variables:

1
fa(x) =— L(x|d)f (x)

Evidence (or marginal likelihood)
cg = Ef[L(X|d)]

Updated (posterior) failure probability:
Ef[1(g(X) < 0)L(X|d)]
Ef[L(X|d)]

pria: = P(F|d) = Ef, [I(g(X) < 0)] =

16



ICE for rellablllty updating [Kanijilal et al., in prep]

Estimation of denominator (evidence)
Optimal (zero variance) IS density

1
hp(x) = fa(x) = aL(xld)f (x)

Apply iCE with intermediate target densities defined as
hpe(x) o< L(x|d)Pef(x) with By < <Br, =1

Estimation of numerator
Optimal (zero variance) IS density

hy(x) o< I(g(x) < 0)L(x|d)f (x)

Apply iCE with intermediate target densities defined as
g(x)

Ot

hy¢(x) « c1>< >L(x|d)f(x) with oy > - >o0r, >0
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Fatigue crack growth

Rate of crack growth of an infinite plate — Paris’ law:

dC;Eln) —C lAS\Wlm

which can be solved to give:

Myl _m
(1-%) casmazn+ ne 2)]1 ’

a(n) = o

The number of stress cycles to reach a critical length a.:

2 1 1
ne = — , m=*2
© (m-2)C(mAS)™ Lm—;z a—mgzl
0 c

Performance function: g = n. — ns; with n = 5x10° and a, = 50mm
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Fatigue crack growth (ll)

Prior distribution of model parameters X = [a,; AS;In C ; m]

Variable Distribution  Mean St. Dev. Correlation
ao, [mm] Exponential 1 1

AS [Nmm™2] Normal 60 10

InC,m[—] Bi-normal [-33;3.5] [0.47;0.3] —-0.9

The crack size is measured at n, = 10° and n, = 2x10° as ap, ; = 0.8mm,
a2 = 1.1mm

Likelihood function:

L(de) X exp (_%Z (a(x, Tl;-) — am.i> )

i=1
with o, = 0.2mm
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Fatigue crack growth (lll)

Results for N = 500, §* = 1.5; Gaussian distribution model

Reference probability: pr g = 4.9x107*

Ncg
125 250 500
Pria (x107%) 4.70 4.80 4.85
Oppia 0.23 0.10 0.08
Tp 2 2 2
Twn 7.3 6.3 5.9
Niot 2038 2837 4443
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Fatigue crack growth (lll)

Results for §* = 1.5; Gaussian distribution model

Reference probability: pr g = 4.9x107*
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Summary

« ICE method employs a sequence of smooth approximations of the optimal IS
« The modified sequence enables efficient use of the intermediate samples to

solve the CE optimization problems
« VMFN mixture distribution model extends the application of the CE method to

high dimensional problems
« Application of the iCE method to Bayesian analysis of rare events

22
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