Transform MCMC schemes for sampling intractable factor copula models

Rodrigo Targino¹

School of Applied Mathematics (EMAp), Fundação Getulio Vargas (FGV)

20/May/2021

¹Joint work with Cyril Bénézet and Emmanuel Gobet

Introduction

- ▶ In financial and actuarial risk management, modelling dependency within a random vector X is crucial
- A standard approach is the use of a copula model
- Drawback: Most parametric copulas are not suitable for high dimensional applications
- ▶ Generic statistics of interest, for $\mathcal{X} \sim C(F^{(1)}, \dots, F^{(d)})$

$$\mathbb{E}\left(g(\mathcal{X})\right)$$
 and $\mathbb{E}\left(g(\mathcal{X})\mid\mathcal{X}\in A\right)$.

- ▶ If $\{X \in A\}$ is a rare event (e.g. tail event), i.i.d. MC sampling is **inefficient**
- ► MCMC sampling may be helpful.

Examples

► Tail dependence: (McNeil, Frey, Embrechts, ('05))

$$\lambda_{i,\mathcal{I}}^{u} := \lim_{\alpha \to 1^{-}} \mathbb{P}\left[\mathcal{X}^{(i)} > \mathsf{VaR}_{\alpha}\left(\mathcal{X}^{(i)}\right) \mid \forall j \in \mathcal{I}, \mathcal{X}^{(j)} > \mathsf{VaR}_{\alpha}\left(\mathcal{X}^{(j)}\right)\right]$$

► Semi-correlation (Ang and Chen ('02), Gabbi ('05)):

$$\begin{split} \rho_{i,j}^+ &:= \mathsf{Cor}\left(\mathcal{X}^{(i)}, \mathcal{X}^{(j)} \mid \mathcal{X}^{(i)} > 0, \mathcal{X}^{(j)} > 0\right), \\ \rho_{i,j}^- &= \mathsf{Cor}\left(\mathcal{X}^{(i)}, \mathcal{X}^{(j)} \mid \mathcal{X}^{(i)} < 0, \mathcal{X}^{(j)} < 0\right) \end{split}$$

► *k*-expected shortfall (Oh and Patton ('17)):

$$(k-\mathsf{ES})^{(i)} = \mathbb{E}\left(\mathcal{X}^{(i)} \,\Big|\, \left(\sum_{j=1}^d \mathbf{1}_{\{\mathcal{X}^{(j)} \geq C\}}
ight) > k
ight)$$

Factor copulas

- ▶ Oh and Patton ('17): use as copula C the copula of an auxiliary vector $\mathcal{Y} = \Phi(\mathcal{Z})$, with $\Phi : \mathbb{R}^D \to \mathbb{R}^d$
 - $ightharpoonup \mathcal{Z} := (\mathcal{M}^{(1)}, \dots, \mathcal{M}^{(J)}, \epsilon^{(1)}, \dots, \epsilon^{(d)})$ with D = J + d
 - $\longrightarrow \mathcal{M} = (\mathcal{M}^{(1)}, \dots, \mathcal{M}^{(J)})$ (factors)
 - $\epsilon = (\epsilon^{(1)}, \dots, \epsilon^{(d)})$ (idiosyncratic errors)
 - $lackbrack (\mathcal{M}^{(1)},\ldots,\mathcal{M}^{(J)},\epsilon^{(1)},\ldots,\epsilon^{(d)})$ indep. and $(\epsilon^{(i)})_{i=1}^d$ i.i.d.
- Example (linear factor copula):
 - $\mathcal{Y}^{(i)} = \mathcal{M} + \epsilon^{(i)}$
 - $ightharpoonup \mathcal{M} \sim \mathsf{skew} \; \mathsf{t}(\nu, \lambda)$
 - $ightharpoonup \epsilon^{(i)} \stackrel{iid}{\sim} t(\nu)$
- **▶** Notation:

Factor copulas

The problem:

- $\blacktriangleright \mathbb{E}(g(\mathcal{X}) \mid \mathcal{X} \in A) \approx \frac{1}{n} \sum_{k=1}^{n} g(\mathcal{X}_k)$
- Convergence rate?

Example: (Oh and Patton ('17))

- ► Model for the losses of the stocks in the S&P 100:
 - $\mathcal{Y}^{(i)} = \beta_{S(i)} \mathcal{M}^{(0)} + \gamma_{S(i)} \mathcal{M}^{(S(i))} + \epsilon^{(i)}$
 - $ightharpoonup \mathcal{M}^{(0)} \sim \text{skew t}(\nu, \lambda),$
 - $ightharpoonup \mathcal{M}^{(S)} \stackrel{iid}{\sim} t(\nu), \ S = 1, \dots, J-1, \ \text{with} \ \mathcal{M}^{(S)} \perp \!\!\!\perp \mathcal{M}^{(0)},$
- ► Compute the $(k ES)^{(i)}$:

$$\mathbb{E}\left(\mathcal{X}^{(i)} \left| \mathcal{X}^{(1)} > 1\%, \dots, \mathcal{X}^{(d)} > 1\%
ight)$$

How to sample \mathcal{X} ?

Algorithm 1: Usual sampling of ${\mathcal X}$ through sampling of ${\mathcal Z}$

- 1 Sample $\mathcal{Z} = (\mathcal{M}, \epsilon)$
- 2 Compute $\mathcal{Y} = \Phi(\mathcal{Z})$
- **3** Get $U = (U_1, \dots, U_d) = (G^{(1)}(\mathcal{Y}^{(1)}), \dots, G^{(d)}(\mathcal{Y}^{(d)}))$
- 4 Set $\mathcal{X}^{(i)} = (F^{(i)})^{-1}(U_i)$

$$\mathcal{Z} = \begin{bmatrix} \mathcal{Z}^{(1)} \\ \vdots \\ \mathcal{Z}^{(D)} \end{bmatrix} \stackrel{\Phi}{\to} \mathcal{Y} = \begin{bmatrix} \mathcal{Y}^{(1)} = \Phi^{(1)}(\mathcal{Z}) \\ \vdots \\ \mathcal{Y}^{(d)} = \Phi^{(d)}(\mathcal{Z}) \end{bmatrix} \to U = \begin{bmatrix} U^{(1)} = \mathbf{G}^{(1)} \left(\mathcal{Y}^{(1)} \right) \\ \vdots \\ U^{(d)} := \mathbf{G}^{(d)} \left(\mathcal{Y}^{(d)} \right) \end{bmatrix} \to \begin{bmatrix} \mathcal{X}^{(1)} = \left(F^{(1)} \right)^{-1} \left(U^{(1)} \right) \\ \vdots \\ \mathcal{X}^{(d)} = \left(F^{(d)} \right)^{-1} \left(U^{(d)} \right) \end{bmatrix} = \mathcal{X}$$

▶ **Infeasible** if $G^{(i)}$ is not known!

A feasible algorithm to compute $\mathbb{E}\left(g(\mathcal{X})\right)$

3

Algorithm 2: Sampling of \mathcal{X} through approximate sampling of \mathcal{Z} and approximation of $G^{(i)}$

Input:
$$(F^{(i)})^{-1}$$
 the quantile of $\mathcal{X}^{(i)}$, $\mathcal{Z}_0 \in \mathbb{R}^D$

Output: $\mathcal{X}_k = \left(\mathcal{X}_k^{(1)}, \ldots, \mathcal{X}_k^{(d)}\right)$ for $1 \leq k \leq n$.

for $\frac{k \leftarrow 1$ to n do

Sample \mathcal{Z}_k from $\mathcal{P}(\mathcal{Z}_{k-1}, \cdot)$.

Compute $\mathcal{Y}_k = \Phi(\mathcal{Z}_k)$.

Approximate and mollify $G^{(i)}$ by

$$\tilde{G}_k^{(i)}(y) := \frac{1}{2\sqrt{k}} + \left(1 - \frac{1}{\sqrt{k}}\right) \left(\frac{1}{k} \sum_{\ell=1}^k \mathbf{1}_{\mathcal{Y}_\ell^{(i)} \leq y}\right).$$

Set $V_k^{(i)} := \tilde{G}_k^{(i)}(\mathcal{Y}_k^{(i)})$ and $V_k := (V_k^{(i)})_{i=1}^d$.

Set $\mathcal{X}_k^{(i)} := (F^{(i)})^{-1} \left(V_k^{(i)}\right)$ and $\mathcal{X}_k := (\mathcal{X}_k^{(i)})_{i=1}^d$.

▶ We also define
$$W_k^{(i)} := G^{(i)} \left(\mathcal{Y}_k^{(i)} \right)$$
 and $W_k = \left(W_k^{(i)} \right)_{i=1}^d$.

Assumptions

- 1. The marginal c.d.f. $G^{(i)}$ of $\mathcal{Y}^{(i)}$ is **continuous**.
- 2. The transition kernel \mathcal{P} defines a geometrically ergodic Markov Chain $(\mathcal{Z}_k : k \geq 0)$ with Lyapunov function \mathcal{L}
- 3. The initial point of $\mathcal{Z}_0 \in \mathcal{A}^Z$ is deterministic.
- 4. There exists $q_{\text{max}} \in [-1, 0)$ s.t. $\forall q > q_{\text{max}}$, the map $(G^{(i)} \circ \Phi^{(i)})^q + (1 G^{(i)} \circ \Phi^{(i)})^q$ is bounded in \mathcal{L} -norm
- 5. The function $\varphi := g \circ ((F^{(1)})^{-1}, \dots, (F^{(i)})^{-1}, \dots, (F^{(d)})^{-1})$ is **locally Lipschitz**: there exists a **slowly varying** function $\ell : (0,1] \to (0,\infty)$ at 0, and a parameter $0 \le \alpha < -q_{\max}$ s.t.

$$|\varphi(u)-\varphi(v)|\leq \sum_{i=1}^d\frac{\ell(u_i\wedge v_i)|u_i-v_i|}{(u_i\wedge v_i)^{\alpha+1}}+\sum_{i=1}^d\frac{\ell(1-u_i\vee v_i)|u_i-v_i|}{(1-u_i\vee v_i)^{\alpha+1}},$$

$$|\varphi(u)| \leq \sum_{i=1}^d \frac{\ell(u_i)}{u_i^{\alpha}} + \sum_{i=1}^d \frac{\ell(1-u_i)}{(1-u_i)^{\alpha}}.$$

Main results I

Theorem (Uniform convergence of the c.d.f. of \mathcal{Y} in L_p -norm)

For any $p \ge 1$, $n \ge 1$ and $i \in \{1, ..., d\}$, we have

$$\left| \sup_{y \in \mathbb{R}} |\tilde{G}_{n}^{(i)}(y) - G^{(i)}(y)| \right|_{p} \leq C_{p} n^{-\frac{p}{2(p+1)}},$$

for some finite constant C_p .

Theorem (Strong approximation)

For all $\iota>0$ and any $p\in[1,\frac{-q_{\max}}{\alpha})$, there exists a constant $C_{\iota,p}>0$ such that, for any $n\geq 1$,

$$|\varphi(V_n) - \varphi(W_n)|_p \le C_{p,\iota} n^{-\frac{1}{2p} + \frac{\alpha}{2|q_{\mathsf{max}}|} + \iota}.$$

Main results II

Corollary (Weak convergence)

For all $\iota > 0$, there exists a constant $C_{\iota} > 0$ such that, for any $n \geq 1$,

$$|\mathbb{E}(\varphi(V_n)) - \mathbb{E}(\varphi(U))| \leq C_{\iota} n^{-\frac{1}{2} + \frac{\alpha}{2|q_{\mathsf{max}}|} + \iota}.$$

Corollary (Convergence of Monte Carlo averages)

For all $\iota > 0$ and for any $p \ge 1$ satisfying $p \lor 2 < \frac{|q_{\text{max}}|}{\alpha}$, there exists a positive constant $C_{p,\iota}$ such that for any $n \ge 1$,

$$\left|\frac{1}{n}\sum_{k=1}^{n}\varphi(V_k)-\mathbb{E}\left(\varphi(U)\right)\right|_{\mathbf{p}}\leq C_{p,\iota}n^{-\frac{1}{2p}+\frac{\alpha}{2|q_{\max}|}+\iota}.$$

Algorithm 3: sampling of $\mathcal{Z} \mid A$ via sampling of $\mathcal{Z} \mid \mathcal{Z} \in \mathcal{A}^{Z}$ and $\mathcal{Z} \mid \mathcal{Z} \in (\mathcal{A}^{\mathsf{Z}})^c$

Input: $(F^{(i)})^{-1}$ the quantile of $\mathcal{X}^{(i)}$, $\mathcal{Z}_{0,A} \in \mathcal{A}^Z$, $\mathcal{Z}_{0,A^c} \in (\mathcal{A}^Z)^c$

Output:
$$\mathcal{X}_k = \left(\mathcal{X}_k^{(1)}, \dots, \mathcal{X}_k^{(d)}\right)$$
 for $1 \leq k \leq n$.

for
$$\underline{k \leftarrow 1 \text{ to } n}$$
 do

1 | Sample $\mathcal{Z}_{k,A}$ from $\mathcal{P}(\mathcal{Z}_{k-1,A},\cdot)$ and accept if in $\mathcal{A}^{\mathcal{Z}}$.

Sample
$$\mathcal{Z}_{k,A}$$
 from $\mathcal{P}(\mathcal{Z}_{k-1,A},\cdot)$ and accept if in \mathcal{A} .

Compute $\mathcal{Y}_{k,A} = \Phi(\mathcal{Z}_{k,A})$.

Sample
$$\mathcal{Z}_{k,A^c}$$
 from $\mathcal{P}(\mathcal{Z}_{k-1,A^c},\cdot)$ and accept if in $(\mathcal{A}^Z)^c$. Compute $\mathcal{Y}_{k,A^c} = \Phi(\mathcal{Z}_{k,A^c})$.

Approximate and mollify
$$G^{(i)}$$
 by

2

3

4

5

$$ilde{G}_k^{(i)}(y) := rac{1}{2\sqrt{k}} + \left(1 - rac{1}{\sqrt{k}}
ight) \left(\left(rac{1}{k}\sum_{\ell=1}^k \mathbf{1}_{\mathcal{Y}_{\ell,A}^{(i)} \leq y}
ight) \mathbb{P}\left[A
ight] + \left(rac{1}{k}\sum_{\ell=1}^k \mathbf{1}_{\mathcal{Y}_{\ell,A^c}^{(i)} \leq y}
ight) \mathbb{P}\left[A^c
ight]
ight).$$

Set
$$V_k^{(i)}:= ilde{G}_k^{(i)}(\mathcal{Y}_{k,A}^{(i)})$$
 and $V_k:=(V_k^{(i)})_{i=1}^d.$

$$\begin{array}{c|c} \mathbf{6} & \text{Set } V_k^{(i)} := \tilde{G}_k^{(i)}(\mathcal{Y}_{k,A}^{(i)}) \text{ and } V_k := (V_k^{(i)})_{i=1}^d. \\ \mathbf{7} & \text{Set } \mathcal{X}_k^{(i)} := \left(F^{(i)}\right)^{-1} \left(V_k^{(i)}\right) \text{ and } \mathcal{X}_k := (\mathcal{X}_k^{(i)})_{i=1}^d. \end{array}$$

Example: The statistic

k-Expected Shortfall

- \triangleright $\mathcal{X}^{(i)}$ denote the losses of the *i*-th stock
- ▶ We model the assets in the S&P 100 index (d = 100)
- ► Our interest is to compute the k-ES

$$(k-\mathsf{ES})^{(i)} = \mathbb{E}\left(\mathcal{X}^{(i)} \,\middle|\, \mathcal{X}^{(1)} > C, \ldots, \mathcal{X}^{(d)} > C\right).$$

with C = 1%.

▶ We estimate $\mathbb{P}[A] \approx 1.42 \times 10^{-4}$ using a crude MC procedure for \mathcal{Y} , with sample size 10^6

Example: The model

Linear Factor Copula

```
\triangleright \mathcal{X}^{(i)} \sim t_{\nu_i}(m_i, s_i), (marginal stock loss)
 \mathcal{Y}^{(i)} = \beta_{S(i)} \mathcal{M}^{(0)} + \gamma_{S(i)} \mathcal{M}^{(S(i))} + \epsilon^{(i)} \text{ with } 
                          S(i) \in \{1, \dots, 7\} (industry group)
                        \mathcal{M}^{(0)} \sim \text{skew t}(\nu, \lambda) (market-wide factor)
                       \mathcal{M}^{(S)} \stackrel{iid}{\sim} t(\nu), (sector specific factor)
                            \epsilon^{(i)} \stackrel{iid}{\sim} t(\nu), (idiosyncratic noise)
     and \mathcal{M}^{(0)}, \mathcal{M}^{(S)}, \epsilon^{(i)} are independent.
```

Example: The sampler

Random Walk Metropolis

- We sample $\mathcal{Z} = (\mathcal{Z}^{(1)}, \dots, \mathcal{Z}^{(D)})$ using a Markov Chain whose stationary distribution $\pi_{AZ}(z)dz$ is Gaussian restricted to \mathcal{A}^{Z}
- ightharpoonup We use the RWM sampler with Gaussian proposals for ${\mathcal Z}$
- Moreover,

$$\mathcal{M}^{(0)} := G_{\nu,\lambda}^{-1} \circ F_{\mathcal{N}}(\mathcal{Z}^{(1)})$$
 $\mathcal{M}^{(i)} := G_{\nu}^{-1} \circ F_{\mathcal{N}}(\mathcal{Z}^{(i+1)}), \text{ for } i = 1, \dots, J-1$
 $\epsilon^{(i)} := G_{\nu}^{-1} \circ F_{\mathcal{N}}(\mathcal{Z}^{(i+J)}), \text{ for } i = 1, \dots, d$

Also, $\mathcal{Y} = \Phi(\mathcal{Z}) = (\Phi^{(i)}(\mathcal{Z}))_{i=1}^d$ with, for $1 \le i \le d$,

$$\Phi^{(i)}: \mathbb{R}^{D} \to \mathbb{R},$$

$$z \mapsto \beta_{S(i)} G_{\nu,\lambda}^{-1} \circ F_{\mathcal{N}}(z^{(1)}) + \gamma_{S(i)} G_{\nu}^{-1} \circ F_{\mathcal{N}}(z^{(S(i)+1)}) + G_{\nu}^{-1} \circ F_{\mathcal{N}}(z^{(i+J)}).$$

Example: Results

Figure: Black, red and blue: different marginals. Solid colors: average across M chains. Light colors: individual chains.

Conclusion

- We studied the theoretical and numerical properties of a transform MCMC scheme
- This scheme is developed to efficiently compute expectations, conditional to rare events, in which the unconditional distribution is given by an factor copula
- Under mild and natural hypotheses, we are able to derive the convergence rates for our proposed estimators
- We also revisit the computation of a challenging statistic originated in the financial risk management literature.

Thank you for the attention!

Bibliography

- [1] Ang, A. and Chen, J. (2002). Asymmetric correlations of equity portfolios. Journal of financial Economics, 63(3):443–494.
- [2] Gabbi, G. (2005). Semi-correlations as a tool for geographical and sector asset allocation. European Journal of Finance, 11(3):271–281.
- [3] McNeil, A. J., Frey, R., and Embrechts, P. (2010).
 Quantitative Risk Management: Concepts, Techniques, and Tools. Princeton University Press.
- [4] Oh, D. and Patton, A. (2017). Modeling dependence in high dimensions with factor copulas. <u>Journal of Business & Economic</u> Statistics, 35(1):139–154.