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Introduction

I In financial and actuarial risk management, modelling
dependency within a random vector X is crucial

I A standard approach is the use of a copula model

I Drawback: Most parametric copulas are not suitable for high
dimensional applications

I Generic statistics of interest, for X ∼ C (F (1), . . . ,F (d))

E (g(X )) and E (g(X ) | X ∈ A) .

I If {X ∈ A} is a rare event (e.g. tail event), i.i.d. MC
sampling is inefficient

I MCMC sampling may be helpful.



Examples

I Tail dependence: (McNeil, Frey, Embrechts, (’05))

λui ,I := lim
α→1−

P
[
X (i) > VaRα

(
X (i)

)
| ∀j ∈ I,X (j) > VaRα

(
X (j)

)]
I Semi-correlation (Ang and Chen (’02), Gabbi (’05)):

ρ+
i ,j := Cor

(
X (i),X (j) | X (i) > 0,X (j) > 0

)
,

ρ−i ,j = Cor
(
X (i),X (j) | X (i) < 0,X (j) < 0

)
I k-expected shortfall (Oh and Patton (’17)):

(k − ES)(i) = E

X (i)
∣∣∣
 d∑

j=1

1{X (j)≥C}

 > k





Factor copulas

I Oh and Patton (’17): use as copula C the copula of an
auxiliary vector Y = Φ(Z), with Φ : RD → Rd

I Z := (M(1), . . . ,M(J), ε(1), . . . , ε(d)) with D = J + d
I M = (M(1), . . . ,M(J)) (factors)
I ε = (ε(1), . . . , ε(d)) (idiosyncratic errors)
I (M(1), . . . ,M(J), ε(1), . . . , ε(d)) indep. and (ε(i))di=1 i.i.d.

I Example (linear factor copula):
I Y(i) =M+ ε(i)

I M∼ skew t(ν, λ)

I ε(i) iid∼ t(ν)

I Notation:
I Y ∼ C (G (1), . . . ,G (d))
I X ∼ C (F (1), . . . ,F (d))



Factor copulas

The problem:

I X = (X1 . . . ,Xk) ∼ C (F (1), . . . ,F (d))

I E (g(X ) | X ∈ A) ≈ 1
n

∑n
k=1 g(Xk)

I Convergence rate?

Example: (Oh and Patton (’17))
I Model for the losses of the stocks in the S&P 100:

I Y(i) = βS(i)M(0) + γS(i)M(S(i)) + ε(i)

I M(0) ∼ skew t(ν, λ),

I M(S) iid∼ t(ν), S = 1, . . . , J − 1, with M(S) ⊥⊥M(0),

I ε(i) iid∼ t(ν), i = 1, . . . , d , ε(i) ⊥⊥M(j)

I Compute the (k − ES)(i):

E

(
X (i)

∣∣∣∣∣X (1) > 1%, . . . ,X (d) > 1%

)



How to sample X ?
Algorithm 1: Usual sampling of X through sampling of Z

1 Sample Z = (M, ε)
2 Compute Y = Φ(Z)

3 Get U = (U1, . . . ,Ud) = (G (1)(Y(1)), . . . ,G (d)(Y(d)))

4 Set X (i) = (F (i))−1(Ui )

Z =

Z
(1)

...

Z(D)

 Φ→ Y =

Y
(1) = Φ(1)(Z)

...

Y (d) = Φ(d)(Z)

→ U =


U(1) = G (1)

(
Y(1)

)
...

U(d) := G (d)
(
Y(d)

)
→

→


X (1) =

(
F (1)

)−1 (
U(1)

)
...

X (d) =
(
F (d)

)−1 (
U(d)

)
 = X

I Infeasible if G (i) is not known!



A feasible algorithm to compute E (g(X ))

Algorithm 2: Sampling of X through approximate sampling
of Z and approximation of G (i)

Input: (F (i))−1 the quantile of X (i), Z0 ∈ RD

Output: Xk =
(
X (1)
k , . . . ,X (d)

k

)
for 1 ≤ k ≤ n.

for k ← 1 to n do
1 Sample Zk from P(Zk−1, ·).
2 Compute Yk = Φ(Zk).

3 Approximate and mollify G (i) by

G̃
(i)
k (y) := 1

2
√
k

+
(

1− 1√
k

)(
1
k

∑k
`=1 1Y(i)

` ≤y

)
.

4 Set V
(i)
k := G̃

(i)
k (Y(i)

k ) and Vk := (V
(i)
k )di=1.

5 Set X (i)
k :=

(
F (i)

)−1
(
V

(i)
k

)
and Xk := (X (i)

k )di=1.

I We also define W
(i)
k := G (i)

(
Y(i)
k

)
and Wk =

(
W

(i)
k

)d
i=1

.



Assumptions
1. The marginal c.d.f. G (i) of Y(i) is continuous.

2. The transition kernel P defines a geometrically ergodic
Markov Chain (Zk : k ≥ 0) with Lyapunov function L

3. The initial point of Z0 ∈ AZ is deterministic.

4. There exists qmax ∈ [−1, 0) s.t. ∀q > qmax, the map(
G (i) ◦ Φ(i)

)q
+
(
1− G (i) ◦ Φ(i)

)q
is bounded in L-norm

5. The function ϕ := g ◦
(
(F (1))−1, . . . , (F (i))−1, . . . , (F (d))−1

)
is locally Lipschitz: there exists a slowly varying function
` : (0, 1]→ (0,∞) at 0, and a parameter 0 ≤ α < −qmax s.t.

|ϕ(u)− ϕ(v)| ≤
d∑

i=1

`(ui ∧ vi )|ui − vi |
(ui ∧ vi )α+1

+
d∑

i=1

`(1− ui ∨ vi )|ui − vi |
(1− ui ∨ vi )α+1

,

|ϕ(u)| ≤
d∑

i=1

`(ui )

uαi
+

d∑
i=1

`(1− ui )

(1− ui )α
.



Main results I

Theorem (Uniform convergence of the c.d.f. of Y in Lp-norm)

For any p ≥ 1, n ≥ 1 and i ∈ {1, . . . , d}, we have∣∣∣∣∣sup
y∈R
|G̃ (i)

n (y)− G (i)(y)|

∣∣∣∣∣
p

≤ Cp n
− p

2(p+1) ,

for some finite constant Cp.

Theorem (Strong approximation)

For all ι > 0 and any p ∈ [1, −qmax

α ), there exists a constant
Cι,p > 0 such that, for any n ≥ 1,

|ϕ(Vn)− ϕ(Wn)|p ≤ Cp,ιn
− 1

2p
+ α

2|qmax|
+ι
.



Main results II

Corollary (Weak convergence)

For all ι > 0, there exists a constant Cι > 0 such that, for any
n ≥ 1,

|E (ϕ(Vn))− E (ϕ(U))| ≤ Cιn
− 1

2
+ α

2|qmax|
+ι
.

Corollary (Convergence of Monte Carlo averages)

For all ι > 0 and for any p ≥ 1 satisfying p ∨ 2 < |qmax|
α , there

exists a positive constant Cp,ι such that for any n ≥ 1,∣∣∣∣∣1n
n∑

k=1

ϕ(Vk)− E (ϕ(U))

∣∣∣∣∣
p

≤ Cp,ιn
− 1

2p
+ α

2|qmax|
+ι
.



Algorithm 3: sampling of X | A via sampling of Z | Z ∈ AZ

and Z | Z ∈ (AZ)c

Input: (F (i))−1 the quantile of X (i), Z0,A ∈ AZ , Z0,Ac ∈ (AZ )c

Output: Xk =
(
X (1)

k , . . . ,X (d)
k

)
for 1 ≤ k ≤ n.

for k ← 1 to n do
1 Sample Zk,A from P(Zk−1,A, ·) and accept if in AZ .
2 Compute Yk,A = Φ(Zk,A).

3 Sample Zk,Ac from P(Zk−1,Ac , ·) and accept if in (AZ )c .
4 Compute Yk,Ac = Φ(Zk,Ac ).

5 Approximate and mollify G (i) by

G̃
(i)
k (y) :=

1

2
√
k

+

(
1− 1√

k

)((
1

k

k∑
`=1

1Y(i)
`,A≤y

)
P [A] +(

1

k

k∑
`=1

1Y(i)
`,Ac
≤y

)
P [Ac ]

)
.

6 Set V
(i)
k := G̃

(i)
k (Y(i)

k,A) and Vk := (V
(i)
k )di=1.

7 Set X (i)
k :=

(
F (i)
)−1

(
V

(i)
k

)
and Xk := (X (i)

k )di=1.



Example: The statistic
k-Expected Shortfall

I X (i) denote the losses of the i-th stock

I We model the assets in the S&P 100 index (d = 100)

I Our interest is to compute the k-ES

(k − ES)(i) = E

(
X (i)

∣∣∣∣∣X (1) > C , . . . ,X (d) > C

)
.

with C = 1%.

I We estimate P [A] ≈ 1.42× 10−4 using a crude MC
procedure for Y, with sample size 106



Example: The model
Linear Factor Copula

I X (i) ∼ tνi (mi , si ), (marginal stock loss)

I Y(i) = βS(i)M(0) + γS(i)M(S(i)) + ε(i) with

S(i) ∈ {1, . . . , 7} (industry group)

M(0) ∼ skew t(ν, λ) (market-wide factor)

M(S) iid∼ t(ν), (sector specific factor)

ε(i) iid∼ t(ν), (idiosyncratic noise)

and M(0),M(S), ε(i) are independent.



Example: The sampler
Random Walk Metropolis

I We sample Z = (Z(1), . . . ,Z(D)) using a Markov Chain whose
stationary distribution πAZ (z)dz is Gaussian restricted to AZ

I We use the RWM sampler with Gaussian proposals for Z
I Moreover,

M(0) := G−1
ν,λ ◦ FN (Z(1))

M(i) := G−1
ν ◦ FN (Z(i+1)), for i = 1, . . . , J − 1

ε(i) := G−1
ν ◦ FN (Z(i+J)), for i = 1, . . . , d

I Also, Y = Φ(Z) =
(
Φ(i)(Z)

)d
i=1

with, for 1 ≤ i ≤ d ,

Φ(i) : RD → R,

z 7→ βS(i)G
−1
ν,λ ◦ FN (z(1)) + γS(i)G

−1
ν ◦ FN (z(S(i)+1))

+ G−1
ν ◦ FN (z(i+J)) .



Example: Results
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Figure: Black, red and blue: different marginals. Solid colors: average
across M chains. Light colors: individual chains.



Conclusion

I We studied the theoretical and numerical properties of a
transform MCMC scheme

I This scheme is developed to efficiently compute expectations,
conditional to rare events, in which the unconditional
distribution is given by an factor copula

I Under mild and natural hypotheses, we are able to derive the
convergence rates for our proposed estimators

I We also revisit the computation of a challenging statistic
originated in the financial risk management literature.

Thank you for the attention!
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