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Introduction

» In financial and actuarial risk management, modelling
dependency within a random vector X is crucial

» A standard approach is the use of a copula model

» Drawback: Most parametric copulas are not suitable for high
dimensional applications

> Generic statistics of interest, for X ~ C(F(1), ... F(d)
E(g(X) and E(g(X)] X €A).

> If {X¥ € A} is a rare event (e.g. tail event), i.i.d. MC
sampling is inefficient
» MCMC sampling may be helpful.



Examples

» Tail dependence: (McNeil, Frey, Embrechts, ('05))
Mzi= lim P [X(") > VaR, (X<")> 1Vj e Z,x9 > VaR, (XU)H
» Semi-correlation (Ang and Chen ('02), Gabbi ('05)):
pi; = Cor (X“), x0) | x0 > 0, x0) > o) ,
pi; = Cor (X("), x0) | x0 < 0,20 < o)

» k-expected shortfall (Oh and Patton ('17)):

d
(k—ES)) =E (X(i) ) (Z 1{XU)>C}) = k)
=1



Factor copulas

» Oh and Patton ('17): use as copula C the copula of an
auxiliary vector Y = ®(Z), with ¢ : RP — R
> Z:= (MO MDDy with D= J +d
> M= (MO . MU)) (factors)
> e =(eM,..., ) (idiosyncratic errors)
> (MDD MO D e(d)) indep. and (D)9, ilid.

» Example (linear factor copula):
b Y0 = M 4 )
> M ~ skew t(v, A)

> () )

» Notation:
> YV~ C(GW, ..., Gl)
> X~ C(FW, ... Fd)



Factor copulas

The problem:
> X:(Xl,Xk)N C(F(1)77F(d))

> E(g(X) | X € A)= >k 8(Xk)
» Convergence rate?

Example: (Oh and Patton ('17))
» Model for the Iosses of the stocks in the S&P 100:
> V0 = By MO 4 45y MED) 4 )
> MO ~ skew t(v, )),
> MO E ), S=1,...,J—1, with M) 1L MO,
> ()X t(v), i=1,...,d, €D 1 MU
» Compute the (k — ES){):

E (X(’)

x> 1%, .. x@ > 1%)



How to sample X'?

Algorithm 1: Usual sampling of X through sampling of Z

1 Sample Z = (M, ¢)
2 Compute Y = 9(2)
3GetU (Ul/Ud)

» Infeasible if G() is not known!



A feasible algorithm to compute E (g(&X))

Algorithm 2: Sampling of X’ through approximate sampling
of Z and approximation of G()

Input: (F(D)~1 the quantile of X(), 2, € RP
Output: X, = (X,El), ... ,X,Ed)> forl < k<n.
for k < 1to ndo
1 Sample Z; from P(Z_1,-).
2 Compute Yk = ®(Zk).
3 Approximate and mollify G() by
GO0 =5+ (1- %) (l Sl )-
a SetV() =GVt )and Vie i= (V)d,

s | Set )= (FO) " (v )anka (X(’));le.

> We also define W, = G0 (1) and W = (W,f"));.



Assumptions

1.
2.

The marginal c.d.f. GO) of Y() is continuous.

The transition kernel P defines a geometrically ergodic
Markov Chain (Z : k > 0) with Lyapunov function £

The initial point of Zy € AZ is deterministic.

There exists Gmax € [—1,0) s.it. Vg > gmax, the map
(61 09 4 (1~ 60 0 d) is bounded in £-norm

. The function ¢ := g o (FM)=L ... (FD)=1 .. (F(@)~1)

is locally Lipschitz: there exists a slowly varying function
¢:(0,1] — (0,00) at 0, and a parameter 0 < o << —@uax S.t.

E(l —u; Vv v,-)|u,- - V,'|
(1 —u; Vv V,')O‘""1 ’




Main results |

Theorem (Uniform convergence of the c.d.f. of ) in L,-norm)

Foranyp>1,n>1andi€{l,...,d}, we have

sup |G (y) = GO(y)|| < Cp n D,
yeR p

for some finite constant Cp.

Theorem (Strong approximation)

For all « > 0 and any p € [1, =Im=), there exists a constant
C..p > 0 such that, for any n > 1,

1y o
|<)0(VI7) - 90( Wn)|p S CP,Ln 2P+2‘Clmax|+L.



Main results Il

Corollary (Weak convergence)
For all « > 0, there exists a constant C, > 0 such that, for any
n>1,

[ (p(Vi) — E (p(U))] < Cun™ 2+ Zamst 7.

Corollary (Convergence of Monte Carlo averages)
For all v > 0 and for any p > 1 satisfying pV 2 < ‘q'gé—“‘, there

exists a positive constant C,, such that for any n > 1,

1 & i .
;Z‘P(Vk)—E(SD(U)) < Cpun 2+ Mamar] .
k=1 p



B W N =

Algorithm 3: sampling of X' | A via sampling of Z | Z ¢ A“
and Z | Z ¢ (A9)©

Input: (F(D)~! the quantile of X(), Z5 4 € A%, Zy ac € (A?)C
Output: X, = (X,El),...,X,Ed)> forl < k <n.

for k< 1to ndo

Sample Zj 4 from P(Z_1,4,) and accept if in AZ.
Compute yk,A = q)(Zk’A).

Sample Zk ac from P(Zx_1.4c,-) and accept if in (AZ)°.
Compute Vi ac = P(Zk ac).

Approximate and mollify G() by

<y, v 1 1 1
Gy) = VA (1 - ﬂ> ((k > 10 :V>IP’[A] +




Example: The statistic
k-Expected Shortfall

» X() denote the losses of the i-th stock
We model the assets in the S&P 100 index (d = 100)
» Our interest is to compute the k-ES

v

(k—ES)) =E (X(i)

xM > c . x@ s C>.

with C = 1%.
> We estimate P [A] ~ 1.42 x 10~* using a crude MC
procedure for ), with sample size 10°



Example: The model

Linear Factor Copula

> XD~ t,(mj,s;), (marginal stock loss)
> V(i) = /BS(i)M(O) + 75(1.)/\4(5(1')) + ) with

S(i) € {1,.
MO~ skew t(, A) (market-wide factor)

., 7} (industry group)

lld

(
M(S) i t(v), (sector specific factor)
~ t(v), (

idiosyncratic noise)

and M@ M) () are independent.



Example: The sampler
Random Walk Metropolis
> We sample Z = (2, ..., Z(D)) using a Markov Chain whose
stationary distribution 7 4z(z)dz is Gaussian restricted to A%

» We use the RWM sampler with Gaussian proposals for Z
» Moreover,

MO .— GV_; o Far(2M)
MDD = Gl o Fp(20HY), fori=1,...,0—1
) .= G lo FN(Z(H'J)), fori=1,...,d

> Also, Y = &(2) = (#()(2))%_, with, for 1 < i < d,

o) . RD R,
z = Bs(i)Gyx 0 Fn(2W) + 75y G, o Fa(2504Y)
+ G Yo Fa(20H9))



Example: Results
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Figure: Black, red and blue: different marginals. Solid colors: average
across M chains. Light colors: individual chains.



Conclusion

» We studied the theoretical and numerical properties of a
transform MCMC scheme

» This scheme is developed to efficiently compute expectations,
conditional to rare events, in which the unconditional
distribution is given by an factor copula

» Under mild and natural hypotheses, we are able to derive the
convergence rates for our proposed estimators

» We also revisit the computation of a challenging statistic
originated in the financial risk management literature.

Thank you for the attention!
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