Regenerative-Simulation-Based Estimators of Risk Measures for Hitting Times to Rarely Visited Sets

Peter W. Glynn, Marvin K. Nakayama, Bruno Tuffin

Stanford University, NJIT, Inria

RESIM 2021

Context and goals

- Common in the literature to estimate $\mu = \mathbb{E}[T]$ with $T = \inf\{t \geq 0 : X(t) \in \mathcal{A}\}$, hitting time of \mathcal{A}
- But what about the distribution F of T, in a rare event context?
 - ▶ May be required to estimate q-quantiles (0 < q < 1) of hitting times:

$$\xi = F^{-1}(q) \equiv \inf\{t : F(t) \ge q\}$$

▶ and the conditional tail expectation (CTE)

$$\gamma = E[T \mid T > \xi].$$

- We designed two (exponential and convolution) estimators in a regenerative context
 Glynn, Nakayama & T., WSC 2018
- And even 3 variations not particularly producing improvements

Glynn, Nakayama & T., WSC 2020

Our Goals:

Context and goals

- Common in the literature to estimate $\mu = \mathbb{E}[T]$ with $T = \inf\{t \geq 0 : X(t) \in \mathcal{A}\}$, hitting time of \mathcal{A}
- But what about the distribution F of T, in a rare event context?
 - ▶ May be required to estimate q-quantiles (0 < q < 1) of hitting times:

$$\xi = F^{-1}(q) \equiv \inf\{t : F(t) \ge q\}$$

▶ and the conditional tail expectation (CTE)

$$\gamma = E[T \mid T > \xi].$$

- We designed two (exponential and convolution) estimators in a regenerative context
 Glynn, Nakayama & T., WSC 2018
- And even 3 variations not particularly producing improvements

Glynn, Nakayama & T., WSC 2020

Our Goals:

- 1/ Recall the exponential and convolution estimators and their efficiency
- 2/ Illustrate their respective power on a simple example.

B. Tuffin (Inria) Risk Measures RESIM 2021 2 / 19

- Model: regenerative process
- Estimators
 - Exponential Approximation Estimator
 - Convolution Estimator
- Numerical efficiency
- Analysis on a toy example
- Conclusions

Regenerative system

• Regeneration times $0 = \Gamma_0 < \Gamma_1 < \cdots$, with iid cycles $((\tau_k, (X(\Gamma_{k-1} + s) : 0 \le s < \tau_k) : k \ge 1)$

- $\tau_k = \Gamma_k \Gamma_{k-1}$, length of the kth regenerative cycle
- $T_k = \inf\{t \ge 0 : X(\Gamma_{k-1} + t) \in A\}$ first hitting to A after regeneration Γ_{k-1}
- $M = \sup\{i > 0 : T_i > \tau_i\}$ (# cycles before first hitting A)

◆ロト ◆個ト ◆園ト ◆園ト ■ めのの

4 / 19

B. Tuffin (Inria) Risk Measures RESIM 2021

Regenerative system

• Regeneration times $0 = \Gamma_0 < \Gamma_1 < \cdots$, with iid cycles $((\tau_k, (X(\Gamma_{k-1} + s) : 0 \le s < \tau_k) : k \ge 1)$

We can express

$$T = S + V \equiv \sum_{i=1}^{M} \tau_i + T_{M+1},$$

where the geometric sum S is independent of V.

B. Tuffin (Inria) Risk Measures RESIM 2021 4/19

Rare event and exponential limit

- Context: $p = \mathbb{P}(T < \tau)$ is small (rare event)
 - ▶ Model indexed by ϵ , rarity parameter, such that $p \equiv p_{\epsilon} \rightarrow 0$
- Ex: GI/G/1 queue
 - buffer size $b \equiv b_{\epsilon} = \lceil 1/\epsilon \rceil$
 - $A = A_{\epsilon} = \{b_{\epsilon}, b_{\epsilon} + 1, \dots\}$
- Ex: Highly Reliable System (HRS; HRMS in the Markovian case)
 - Multicomponent system with component j failure rate $\lambda_j = c_j \epsilon^{d_j}$ $(d_j > 0)$
 - ightharpoonup Repair distributions independent of ϵ
 - Set A: states with combinations of components down.

Theorem (Renyi's)

In the above contexts, if $p_\epsilon \to 0$ as $\epsilon \to 0$, T_ϵ/μ_ϵ converges weakly to an exponential

$$\lim_{\epsilon o 0} \mathbb{P}_{\epsilon}(\mathcal{T}_{\epsilon}/\mu_{\epsilon} \leq t) = 1 - e^{-t}, \quad orall t \geq 0.$$

- Model: regenerative process
- 2 Estimators
 - Exponential Approximation Estimator
 - Convolution Estimator
- Numerical efficiency
- Analysis on a toy example
- Conclusions

Exponential Approximation Estimator Glynn, Nakayama and T., WSC'18

- $F(t) = \mathbb{P}_{\epsilon}(T_{\epsilon} < t) = \mathbb{P}_{\epsilon}(T_{\epsilon}/\mu_{\epsilon} < t/\mu_{\epsilon}) \approx 1 e^{-t/\mu_{\epsilon}}$
- "Just" estimate the mean μ_{ϵ}
- Use the expression

$$\mu_{\epsilon} = \frac{\mathbb{E}_{\epsilon}[T_{\epsilon} \wedge \tau_{\epsilon}]}{\mathbb{P}_{\epsilon}(T_{\epsilon} < \tau_{\epsilon})} \equiv \frac{\zeta_{\epsilon}}{p_{\epsilon}}$$

- Measure-specific IS (MSIS): simulate *n* cycles Shahabuddin et al. (1988)
 - $n_{CS} \equiv \gamma n$ cycles to estimate by crude simulation (CS): $\hat{\zeta}_n \approx \zeta_\epsilon$
 - ▶ $n_{IS} \equiv (1-\gamma)n$ cycles to estimate by importance sampling (IS): $\widehat{p}_n \approx p_\epsilon$
- Resulting estimator $\widehat{\mu}_n = \frac{\widehat{\zeta}_n}{\widehat{\rho}_n}$.

Estimator

The exponential estimator of the cdf F(t) of T is

$$\widehat{F}_{exp,n}(t) = 1 - e^{-t/\widehat{\mu}_n}$$

B. Tuffin (Inria) Risk Measures RESIM 2021

7/19

Exponential estimators

- Remarkably, estimating the distribution is reduced to estimating its mean.
- From

$$F(t) = \mathbb{P}(T \le t) = \mathbb{P}(T/\mu \le t/\mu) \approx 1 - e^{-t/\mu} \equiv \widetilde{F}_{\exp}(t),$$

we get

- lacksquare $\widetilde{\xi}_{
 m exp}=\widetilde{F}_{
 m exp}^{-1}(q)=-\mu\ln(1-q)$
- $\widetilde{\gamma}_{\exp} = \widetilde{\xi}_{\exp} + \mu = \mu [1 \ln(1 q)].$

Using an efficient estimator $\widehat{\mu}$ of μ from the literature

L'Ecuyer & T., Annals of OR 2011

$$\widehat{\xi}_{\mathrm{exp}} = \widehat{F}_{\mathrm{exp}}^{-1}(q) = -\widehat{\mu}\ln(1-q)$$
 $\widehat{\gamma}_{\mathrm{exp}} = \widehat{\xi}_{\mathrm{exp}} + \widehat{\mu} = \widehat{\mu}[1-\ln(1-q)]$

4 D > 4 D > 4 E > 4 E > E 9 Q P

8 / 19

Glynn, Nakayama and T., WSC'18

• From T = S + V, the cdf F can be expressed as the convolution $F = G \star H$ with $S \sim G$ and $V \sim H$.

Glynn, Nakayama and T., WSC'18

- From T = S + V, the cdf F can be expressed as the convolution $F = G \star H$ with $S \sim G$ and $V \sim H$.
- Exponential approximation for G when for $p \approx 0$: Kalashnikov (1997) For each $t \geq 0$, $G(t) \approx \widetilde{G}_{\text{exp}}(t) = 1 e^{-t/\eta}$ where $\eta = \mathbb{E}[S] = \mathbb{E}[M] \cdot \mathbb{E}[\tau \mid \tau < T]$.

Glynn, Nakayama and T., WSC'18

- From T = S + V, the cdf F can be expressed as the convolution $F = G \star H$ with $S \sim G$ and $V \sim H$.
- Exponential approximation for G when for $p\approx 0$: Kalashnikov (1997) For each $t\geq 0$, $G(t)\approx \widetilde{G}_{\rm exp}(t)=1-e^{-t/\eta}$ where $\eta=\mathbb{E}[S]=\mathbb{E}[M]\cdot\mathbb{E}[\tau\mid \tau< T].$
- Estimator (CS): $\widehat{G}_{\exp,n}(t) = 1 e^{-t/\widehat{\eta}_n}$ with $\widehat{\eta}_n = \frac{1}{\widehat{\rho}_n \, n_{CS}} \sum_{i=1}^{n_{CS}} \tau_i \mathcal{I}(\tau_i < T_i)$.

Glynn, Nakayama and T., WSC'18

• From T = S + V, the cdf F can be expressed as the convolution $F = G \star H$ with $S \sim G$ and $V \sim H$.

- Exponential approximation for G when for $p\approx 0$: Kalashnikov (1997) For each $t\geq 0$, $G(t)\approx \widetilde{G}_{\rm exp}(t)=1-e^{-t/\eta}$ where $\eta=\mathbb{E}[S]=\mathbb{E}[M]\cdot \mathbb{E}[\tau\mid \tau< T].$
- Estimator (CS): $\widehat{G}_{\exp,n}(t) = 1 e^{-t/\widehat{\eta}_n}$ with $\widehat{\eta}_n = \frac{1}{\widehat{\rho}_n \, n_{CS}} \sum_{i=1}^{n_{CS}} \tau_i \mathcal{I}(\tau_i < T_i)$.
- Estimator (IS) of H: $\widehat{H}_n(x) = \frac{1}{\widehat{p}_n \, n_{IS}} \sum_{i=1}^{n_{IS}} \mathcal{I}(T_i' \wedge \tau_i' \leq x, T_i' < \tau_i') L_i'$

Glynn, Nakayama and T., WSC'18

9/19

• From T = S + V, the cdf F can be expressed as the convolution $F = G \star H$ with $S \sim G$ and $V \sim H$.

- Exponential approximation for G when for $p\approx 0$: For each $t\geq 0$, $G(t)\approx \widetilde{G}_{\rm exp}(t)=1-e^{-t/\eta}$ where $\eta=\mathbb{E}[S]=\mathbb{E}[M]\cdot\mathbb{E}[\tau\mid \tau< T].$
- Estimator (CS): $\widehat{G}_{\exp,n}(t) = 1 e^{-t/\widehat{\eta}_n}$ with $\widehat{\eta}_n = \frac{1}{\widehat{\rho}_n \, n_{CS}} \sum_{i=1}^{n_{CS}} \tau_i \mathcal{I}(\tau_i < T_i)$.
- Estimator (IS) of H: $\widehat{H}_n(x) = \frac{1}{\widehat{\rho}_n \, n_{IS}} \sum_{i=1}^{n_{IS}} \mathcal{I}(T_i' \wedge \tau_i' \leq x, T_i' < \tau_i') L_i'$

Estimator (For cdf F(t); estimators of quantile and CTE deduced)

$$\widehat{F}_{conv,n}(t) = (\widehat{G}_{exp,n} \star \widehat{H}_n)(t) = 1 - \frac{1}{\widehat{p}_n \cdot n_{IS}} \sum_{i=1}^{n_{IS}} \mathcal{I}(T_i' < \tau_i') \, L_i' \, e^{-(t - (T_i' \wedge \tau_i'))^+/\widehat{\eta}_n}.$$

- Model: regenerative process
- 2 Estimators
 - Exponential Approximation Estimator
 - Convolution Estimator
- Numerical efficiency
- Analysis on a toy example
- Conclusions

Numerical example

- Highly reliable Markovian system with three component types
- five components of each type
- 15 repairmen
- system up whenever at least two components of each type work
- Each component has failure rate ϵ and repair rate 1.

With $\epsilon = 10^{-2}$

Numerical results

• Quantile estimators (CPU in sec.)

	ϵ	q	Empirical 95% CI	CPU	Exp. Est.	Exp. 95% CI	CPU
-	0.01	0.1	(1.701e+05, 1.971e+05)	890	1.830e+05	(1.764e+05, 1.896e+05)	0.3
	0.01	0.5	(1.206e+06, 1.271e+06)	890	1.204e+06	(1.161e+06, 1.247e+06)	0.3
	0.01	0.9	(3.958e+06, 4.135e+06)	890	4.000e+06	(3.856e+06, 4.143e+06)	0.3
-	10^{-4}	0.1	N/A	N/A	1.757e+13	(1.756e+13, 1.758e+13)	0.3 sec
	10^{-4}	0.5	N/A	N/A	1.155e+14	(1.154e+14, 1.157e+14)	0.3 sec
	10^{-4}	0.9	N/A	N/A	3.840e+14	(3.838e+14, 3.842e+14)	0.3 sec

CTE estimators (CPU in sec.)

_	ϵ	q	Empirical 95% CI	CPU	Exp. Est.	Exp. 95% CI	CPU	Convol. Est.	CPU
_	0.01	0.1	(1.701e+05, 1.971e+05)	890	1.830e+05	(1.764e+05, 1.896e+05)	0.3	1.865e+05	0.4
	0.01	0.5	(1.206e+06, 1.271e+06)	890	1.204e+06	(1.161e+06, 1.247e+06)	0.3	1.227e+06	0.4
	0.01	0.9	(3.958e+06, 4.135e+06)	890	4.000e+06	(3.856e+06, 4.143e+06)	0.3	4.075e+06	0.4
	10^{-4}	0.1	N/A	N/A	1.757e+13	(1.756e+13, 1.758e+13)	0.3	1.762e+13	0.4
	10^{-4}	0.5	N/A	N/A	1.155e+14	(1.154e+14, 1.157e+14)	0.3	1.159e+14	0.4
	10^{-4}	0.9	N/A	N/A	3.840e+14	(3.838e+14, 3.842e+14)	0.3	3.850e+14	0.4

- Very efficient
- ▶ But biased.... for small ϵ , it does not *seem* a problem in practice.

- Model: regenerative process
- Estimators
 - Exponential Approximation Estimator
 - Convolution Estimator
- Numerical efficiency
- 4 Analysis on a toy example
- 6 Conclusions

Simple (Q + 2)-states example (discrete time)

- With $Q = \lfloor \epsilon^{-w} \rfloor$ $(w \geq 0)$ increasing as $\epsilon \to 0$
- Mixes both asymptotic regimes; what about the convergence to an exponential?
- Only two possibilities for paths of $T \wedge \tau$.
- ullet We have $p=\mathbb{P}(\mathit{T}< au)=\epsilon$ and

$$T = 2M + Q + 1,$$

with S = 2M and V = Q + 1 with M number of cycles between 0 and 1,

$$\mathbb{P}(M=m)=(1-\epsilon)^m\epsilon \ (m=0,1,\dots)$$

B. Tuffin (Inria) Risk Measures RESIM 2021 14 / 19

On the weak convergence of $S_{\epsilon}/\mathbb{E}_{\epsilon}[S_{\epsilon}]$ to an exponential

M geometric with starting value 0; $\mathbb{E}[S_{\epsilon}] = 2(1 - \epsilon)/\epsilon$

 $S_{\epsilon}/\mathbb{E}_{\epsilon}[S_{\epsilon}]$ converges to an exponential whatever $w \geq 0$.

$$\begin{split} P\left(\frac{S}{\mathbb{E}[S]} \leq y\right) &= P\left(M \leq \frac{y(1-\epsilon)}{\epsilon}\right) \\ &= P\left(M+1 \leq \frac{y(1-\epsilon)}{\epsilon}+1\right) \\ &= 1-P\left(M+1 > \frac{y(1-\epsilon)}{\epsilon}+1\right) \\ &= 1-(1-\epsilon)^{\lceil \frac{y(1-\epsilon)}{\epsilon} \rceil+1} \\ &= 1-e^{\log(1-\epsilon)\left(\lceil \frac{y(1-\epsilon)}{\epsilon} \rceil+1\right)} \\ &= 1-e^{-(\epsilon+o(\epsilon))\left(\lceil \frac{y(1-\epsilon)}{\epsilon} \rceil+1\right)} \\ &= 1-e^{-y+o(1)}. \end{split}$$

◄□▶◀圖▶◀臺▶◀臺▶ 臺 외Q◎

15 / 19

B. Tuffin (Inria) Risk Measures RESIM 2021

On the weak convergence of $T_{\epsilon}/\mathbb{E}_{\epsilon}[T_{\epsilon}]$ to an exponential

Recall that T=2M+Q+1 and $\mathbb{E}[T]=2(1-\epsilon)/\epsilon+1/\epsilon^w+1$.

$$\begin{split} P\left(\frac{T}{\mathbb{E}[T]} \leq x\right) &= P\left(M+1 \leq x\left(\frac{(1-\epsilon)}{\epsilon} + \frac{Q+1}{2}\right) - \frac{Q+1}{2} + 1\right) \\ &= 1 - (1-\epsilon)^{\lceil x\left(\frac{(1-\epsilon)}{\epsilon} + \frac{Q+1}{2}\right) - \frac{Q+1}{2} + 1\rceil} \\ &= 1 - e^{\log(1-\epsilon)\lceil x\left(\frac{(1-\epsilon)}{\epsilon} + \frac{\epsilon^{-w}+1}{2}\right) - \frac{\epsilon^{-w}+1}{2} + 1\rceil}. \end{split}$$

 $T_{\epsilon}/\mathbb{E}_{\epsilon}[T_{\epsilon}]$ converges to an exponential if and only is $0 \leq w < 1$.

Basically, the exponential approximation to T = S + V is valid when V is negligible compared to S.

B. Tuffin (Inria) Risk Measures RESIM 2021 16 / 19

Plots of CDFs

IS: replacing transition probability ϵ from state 0 to state 1 by $\alpha = 0.5$.

With $\epsilon = 0.0001$ and w = 0.5 (left) and $\epsilon = 0.1$ and w = 2 (right)

The convolution estimator is the only one always matching the true distribution.

4 L P 4 DP P 4 E P 4 E P 5 C V C V

B. Tuffin (Inria) Risk Measures RESIM 2021 17 / 19

- Model: regenerative process
- 2 Estimators
 - Exponential Approximation Estimator
 - Convolution Estimator
- Numerical efficiency
- Analysis on a toy example
- Conclusions

Conclusions

- Rare-event estimation often focuses on determining a mean
- But other measures are of interest: quantiles, conditional tail expectation, etc.
- For rare events, not so many existing techniques
- We have described two estimators making use of an exponential limit for regenerative systems.
- The convolution estimator is
 - more robust to asymptotic settings
 - and expected to be less biased.

Thank you!