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Chair of Risk, Safety and Uncertainty quantification

The Chair carries out research projects in the field of uncertainty quantification for
engineering problems with applications in structural reliability, sensitivity analysis, model

calibration and reliability-based design optimization

Research topics
• Uncertainty modelling for engineering systems

• Structural reliability analysis

• Surrogate models (polynomial chaos expansions, Kriging, support vector
machines)

• Bayesian model calibration and stochastic inverse problems

• Global sensitivity analysis

• Reliability-based design optimization http://www.rsuq.ethz.ch
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Computational models in engineering

Complex engineering systems are designed and assessed using computational models, a.k.a simulators that allows us:

• To explore the design space (“virtual prototypes”)

• To optimize the system (e.g. minimize the mass) under performance constraints

• To assess its robustness w.r.t uncertainty and its reliability

• Together with experimental data for calibration purposes

Active learning for reliability RESIM2021 – May 19, 2021 B. Sudret 3 / 50



Global framework for uncertainty quantification

Step A
Model(s) of the system

Assessment criteria

Step B
Quantification of

sources of uncertainty

Step C
Uncertainty propagation

Random variables Computational model Moments

Probability of failure

Response PDF

Step C’
Sensitivity analysis

Step C’
Sensitivity analysis

B. Sudret, Uncertainty propagation and sensitivity analysis in mechanical models – contributions to structural reliability and stochastic spectral methods (2007)
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Step C: uncertainty propagation

Goal: estimate the uncertainty / variability of the quantities of interest (QoI) Y =M(X) due to the input uncertainty fX

• Output statistics, i.e. mean, standard deviation, etc.

µY = EX [M(X)]

σ2
Y = EX

[
(M(X)− µY )2] Mean/std.

deviation
µ

σ

• Distribution of the QoI
Response

PDF

• Probability of exceeding an admissible threshold yadm

Pf = P (Y ≥ yadm)

Probability

of

failure
Pf
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Limit state function

• For the assessment of the system’s performance, failure criteria are defined, e.g. :

Failure ⇔ QoI =M(x) ≥ qadm

Examples:

+ admissible stress / displacements in civil engineering
+ max. temperature in heat transfer problems
+ crack propagation criterion in fracture mechanics

• The failure criterion is cast as a limit state function (performance function) g : x ∈ DX 7→ R such that:

g (x,M(x)) ≤ 0 Failure domain Df

g (x,M(x)) > 0 Safety domain Ds

g (x,M(x)) = 0 Limit state surface

e.g. g(x) = qadm −M(x)

Failure domain
Df = {x: g(x) ≤ 0}

Safe domain Ds

x1

x2
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Probability of failure

Definition
Pf = P

({
X ∈ Df

})
= P (g (X,M(X)) ≤ 0)

Pf =
∫
Df ={x∈DX : g(x,M(x))≤0}

fX(x) dx

Features
• Multidimensional integral, whose dimension is equal to the number of basic input variables M = dimX

• Implicit domain of integration defined by a condition related to the sign of the limit state function:

Df = {x ∈ DX : g(x,M(x)) ≤ 0}

• Failures are (usually) rare events: sought probability in the range 10−2 to 10−8
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Classical methods

Approximation methods Hasofer & Lind (1974), Rackwitz & Fiessler (1978)

• First-/Second- order reliability method (FORM/SORM)

– Relatively inexpensive semi-analytical methods
– Convergence is not guaranteed (e.g. in presence of multiple failure regions)

Simulation methods Melchers (1989), Au & Beck (2001), Koutsourelakis et al. (2001)

• Monte Carlo simulation

– Unbiased but slow convergence rate

• Variance-reduction methods

– e.g. Importance sampling, subset simulation, line sampling, etc.
– Their computational costs remain high (i.e. O(103−4) model runs)

Surrogate models can be used to leverage the computational cost of simulation methods
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Surrogate models for uncertainty quantification

A surrogate model M̃ is an approximation of the original computational modelM with the following features:
• It is built from a limited set of runs of the original modelM called the experimental design
X =

{
x(i), i = 1, . . . , n

}
• It assumes some regularity of the modelM and some general functional shape

Name Shape Parameters

Polynomial chaos expansions M̃(x) =
∑
α∈A

aα Ψα(x) aα

Low-rank tensor approximations M̃(x) =
R∑

l=1

bl

(
M∏

i=1

v
(i)
l

(xi)

)
bl, z

(i)
k,l

Kriging (a.k.a Gaussian processes) M̃(x) = β
T · f(x) + Z(x, ω) β , σ2

Z , θ

Support vector machines M̃(x) =
n∑

i=1

ai K(xi,x) + b a , b

(Deep) Neural networks M̃(x) = fn (· · · f2 (b2 + f1 (b1 +w1 · x) ·w2)) w, b

• It is fast to evaluate
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Ingredients for building a surrogate model

• Select an experimental design X that covers at best the domain of input
parameters: Latin hypercube sampling (LHS), low-discrepancy sequences

• Run the computational modelM onto X exactly as in Monte Carlo simulation

• Smartly post-process the data {X ,M(X )} through a learning algorithm

Name Learning method

Polynomial chaos expansions sparse grid integration, least-squares,

compressive sensing

Low-rank tensor approximations alternate least squares

Kriging maximum likelihood, Bayesian inference

Support vector machines quadratic programming
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Advantages of surrogate models

Usage
M(x) ≈ M̃(x)

hours per run seconds for 106 runs

Advantages

• Non-intrusive methods: based on runs of the
computational model, exactly as in Monte
Carlo simulation

• Suited to high performance computing:
“embarrassingly parallel”

Challenges

• Need for rigorous validation

• Communication: advanced mathematical
background

Efficiency: 2-3 orders of magnitude less runs compared to Monte Carlo
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Gaussian process modelling

Gaussian process modelling (a.k.a. Kriging) assumes that the map y =M(x) is a realization of a Gaussian process:

Y (x, ω) =
p∑
j=1

βj fj(x) + σ Z(x, ω)

where:
• f = {fj , j = 1, . . . , p}T are predefined (e.g. polynomial) functions which form the trend or regression part

• β = {β1, . . . , βp}T are the regression coefficients

• σ2 is the variance of Y (x, ω)

• Z(x, ω) is a stationary, zero-mean, unit-variance Gaussian process

E [Z(x, ω)] = 0 Var [Z(x, ω)] = 1 ∀x ∈ X

The Gaussian measure artificially introduced is different from the aleatory uncertainty on the
model parameters X
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Assumptions on the trend and the zero-mean process

Prior assumptions are made based on the existing knowledge on the model to surrogate (linearity, smoothness, etc.)

Trend
• Simple Kriging: known constant β

• Ordinary Kriging: p = 1, unknown constant β

• Universal Kriging: fj ’s is a set of e.g. polynomial functions,
e.g.
{
fj(x) = xj−1, j = 1, . . . , p

}
in 1D

Type of auto-correlation function of Z(x)
A family of auto-correlation function R(·; θ) is selected:

Cov
[
Z(x), Z(x′)

]
= σ2 R(x,x′; θ)

e.g. square exponential, generalized exponential, Matérn, etc.

RMatérn(h; ν = 5/2) = (1 +
√

5h+
5
3
h2) exp(−

√
5h)
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Kriging equations

Data
• Given is an experimental design X = {x1, . . . ,xN} and the output of the computational model
y = {y1 =M(x1), . . . , yN =M(xN )}

• We assume thatM(x) is a realization of a Gaussian process Y (x) such that the values yi =M(xi) are known
at the various points {x1, . . . ,xN}

• Of interest is the prediction at a new point x0 ∈ X, denoted by Ŷ0 ≡ Ŷ (x0, ω), which will be used as a surrogate
M̃(x0)

Ŷ0 is obtained as as a conditional Gaussian variable:

Ŷ0 = Y (x0 | Y (x1) = y1, . . . , Y (xN ) = yN )
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Joint distribution of the predictor / observations

• For each point xi ∈ X , Yi ≡ Y (xi) is a Gaussian variable:

Yi =
p∑
j=1

βj fj(xi) + σZi = fT
i · β + σ Zi Zi ∼ N (0, 1)

• The joint distribution of {Y0, Y1, . . . , YN}T is Gaussian:{
Y0

Y

}
∼ N1+N

({
fT

0 β

Fβ

}
, σ2

[
1 rT

0
r0 R

])

• Regression matrix F of size (N × p)

Fij = fj(xi)
i = 1, . . . , N, j = 1, . . . , p

• Vector of regressors f0 of size p

f0 = {f1(x0), . . . , fp(x0)}

• Correlation matrix R of size (N ×N)

Rij = R(xi,xj ; θ)

• Cross-correlation vector r0 of size N

r0i = R(xi,x0; θ)
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Kriging mean predictor and variance

Santner, William & Notz (2003)

The conditional distribution of Ŷ0 given the observations {Y (xi) = yi}ni=1 is a Gaussian variable:

Ŷ0 ∼ N (µ
Ŷ0
, σ2
Ŷ0

)

Mean predictor : used as surrogate model

µ
Ŷ0

= fT
0 β̂ + rT

0R−1
(
y − F β̂

)
where the regression coefficients β̂ are obtained from the generalized least-square solution:

β̂ =
(

FT R−1 F
)−1

FT R−1 y

Kriging variance : local prediction uncertainty

σ2
Ŷ0

= E
[
(Ŷ0 − Y0)2

]
= σ2

(
1− rT

0 R−1 r0 + uT
0
(

FT R−1 F
)−1

u0

)
u0 = FT R−1 r0 − f0
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One-dimensional example

Computational model

x 7→ x sinx for x ∈ [0, 15]

Experimental design

Six points selected in the range [0, 15] using Monte
Carlo simulation

0 5 10 15

−20

−10

0

10

20

x

M
(x
)

 

 

Conf. interval
M(x) = x sin(x)
Exp.design
Kriging predictor

Confidence intervals With confidence level (1− α), e.g. 95%, one gets:

µ
Ŷ0
− 1.96σ

Ŷ0
≤M(x0) ≤ µ

Ŷ0
+ 1.96σ

Ŷ0
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Sequential updating

0 5 10 15

−20

−10

0

10

20

x

M
(x
)

 

 

Conf. interval
M(x) = x sin(x)
Exp. design
Add. point
Updated predictor
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Kriging for reliability analysis: basic approach

• From a given experimental design X =
{
x(1), . . . ,x(n)

}
, Kriging yields a mean predictor µĝ(x) and the Kriging

variance σĝ(x) of the limit state function g

• The mean predictor is substituted for the “true” limit state function, defining the surrogate failure domain

Df 0 =
{
x ∈ DX : µĝ(x) ≤ 0

}
• The probability of failure is approximated by: Kaymaz, Struc. Safety (2005)

P 0
f = IP

[
µĝ(X) ≤ 0

]
=
∫
D0

f

fX(x) dx = E
[

1D0
f

(X)
]

• Monte Carlo simulation (resp. subset simulation, etc.) can be used on the surrogate model:

P̂ 0
f

=
1
N

N∑
k=1

1D0
f

(xk)
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Confidence bounds on the probability of failure

Shifted failure domains Dubourg et al. , Struct. Mult. Opt. (2011)

• Let us define a confidence level (1− α) and k1−α = Φ−1(1− α/2), i.e. 1.96 if 1− α = 95%, and:

D−
f

=
{
x ∈ DX : µĝ(x) + k1−α σĝ(x) ≤ 0

}
D+
f

=
{
x ∈ DX : µĝ(x)− k1−α σĝ(x) ≤ 0

}
• Interpretation (1− α = 95%):

– If x ∈ D0
f it belongs to the true failure domain with a 50% chance

– If x ∈ D+
f

it belongs to the true failure domain with 95% chance: conservative estimation

Bounds on the probability of failure

D−
f
⊂ D0

f ⊂ D
+
f

⇔ P−
f
≤ P 0

f ≤ P
+
f

See also Picheny et al. (2010, 2013), Chevalier & Ginsbourger (2014), work on excursion sets by Azzimonti et al. (2016)
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Example: hat function

Problem statement
g(x) = 20− (x1 − x2)2 − 8 (x1 + x2 − 4)3

where X1 , X2 ∼ N (0, 1)

• Ref. solution:

Pf = 1.07 · 10−4

• Kriging surrogate:

P−
f

= 7.70 · 10−6

P 0
f = 4.43 · 10−4

P+
f

= 5.52 · 10−2
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How to improve the results?

Heuristics
• The Monte Carlo estimate of Pf reads:

P̂f =
1
N

N∑
k=1

1Df
(xk)≈

1
N

N∑
k=1

1D0
f

(xk)

• The Kriging-based prediction is accurate when:

1D0
f

(xk) = 1Df
(xk) for almost all xk

i.e. if µĝ(x) is of the same sign as g(x) for almost all sample points

Ensure that the mean predictor µĝ(x) classifies properly the MCS samples according to the sign of
g(x)
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Active learning reliability using a Kriging surrogate

Procedure
• Start from an initial experimental design X and build the initial Kriging surrogate

• At each iteration:

– Compute an estimation of Pf and bounds from the current surrogate

– Check a convergence criterion

– Select the next point(s) to be added to X : enrichment (a.k.a. in-fill) criterion

– Update the Kriging surrogate

Early approaches
• Efficient global reliability analysis (EGRA) Bichon et al. (2008)

• Active Kriging - Monte Carlo simulation (AK-MCS) Echard et al. (2011)

• Both use the same reliability estimation algorithm and surrogate model

• They introduce their own learning functions for enrichment
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Different enrichment criteria

Requirements
• It shall be based on the available information:

(
µĝ(x) , σĝ(x)

)
• It shall favor new points in the vicinity of the limit state surface

• If possible, it shall yield the best K points when distributed computing is available

Different enrichment criteria
• Margin indicator function Ph.D Deheeger (2008); Bourinet et al. , Struc. Safety (2011)

• Margin classification function Ph.D Dubourg (2011); Dubourg et al. , PEM (2013)

• Learning function U Ph.D Échard (2012); Échard & Gayton, RESS (2011)

• Expected feasibility function Bichon et al. , AIAA (2008); RESS (2011)

• Stepwise uncertainty reduction (SUR) Bect et al. , Stat. Comput. (2012)

• ... more on slide 35!
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Learning function U(x)

Definition
• The learning function U is defined by: Échard et al. (2011)

U(x) =
|µĝ(x)|
σĝ(x)

Interpretation
• It describes the distance of the mean predictor µĝ to zero in terms of a number of Kriging standard deviations σĝ

• A small value of U(x) means that:

– µĝ(x) ≈ 0: x is close to the limit state surface
– and / or σĝ(x) >> 0: the uncertainty in the prediction at point x is large

• The probability of misclassification of a point x is equal to Φ(−U(x))
Bect et al. , Stat. Comput. (2012)
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Expected feasibility function

Heuristics Bichon et al. , AIAA (2008); Bichon et al. , RESS (2011)

The feasibility function FF (x) describes the distance from the current point x to the limit state surface

• In each point x, one checks if the predictor is sufficiently close to zero: if
∣∣Ŷ (x)

∣∣ > ε, FF (x) = 0

• Otherwise, FF (x) is the distance to the boundary of the tube [−ε, ε]:

FF (x) =
{

0 if Ŷ (x) /∈ [−ε, ε]
ε−
∣∣Ŷ (x)

∣∣ otherwise
= max

(
ε−
∣∣Ŷ (x)

∣∣ , 0)
• As Ŷ (x) is a Gaussian random variable, the expected feasibility function is obtained by:

EFF (x) = EGP
[
max

(
ε−
∣∣Ŷ (x)

∣∣ , 0)] =
∫
R

max (ε− |z|, 0) fŶ (x)(z) dz

where EGP [·] is the expectation with respect to the Gaussian measure associated with Kriging
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Expected feasibility function

EFF (x) =
∫ ε

−ε
(ε− |z|) fŶ (x)(z) dz fŶ (x)(z) =

1
σĝ(x)

ϕ

(
z − µĝ(x)
σĝ(x)

)

The expected feasibility function finally reads:

EFF (x) = µĝ(x)
[

2Φ
(
−
µĝ(x)
σĝ(x)

)
− Φ
(
−ε− µĝ(x)
σĝ(x)

)
− Φ
(
ε− µĝ(x)
σĝ(x)

)]
− σĝ(x)

[
2ϕ
(
−
µĝ(x)
σĝ(x)

)
− ϕ
(
−ε− µĝ(x)
σĝ(x)

)
− ϕ
(
ε− µĝ(x)
σĝ(x)

)]
+ ε

[
Φ
(
ε− µĝ(x)
σĝ(x)

)
− Φ
(
−ε− µĝ(x)
σĝ(x)

)]
NB: Usually a local value of ε is used in each point x, e.g. ε(x) = 2σĝ(x)
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Selection of the new ED points

Optimization of the enrichment criterion

x∗EFF = arg max
x∈DX

EFF (x)

x∗U = arg min
x∈DX

U(x)

Requires to solve a complex optimization problem in each iteration

Discrete optimization over a large Monte Carlo sample X = {x1, . . . ,xn}

x∗EFF = arg max
i=1, ... ,n

{EFF (x1), . . . , EFF (xn)}

x∗U = arg min
i=1, ... ,n

{U(x1), . . . , U(xn)}

“AKMCS”, Échard et al. (2011)
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1D Application example - U function

Limit state function: g(x) = 5− x sinx

0 5 10 15
−20

0

20
Iteration: 5

y

0 5 10 15
−5

0

5

10

lo
g

1
0
(U

)

x
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Example: hat function

X1

X
2

−5 0 5
−5

0

5

X1

X
2

−5 0 5
−5

0

5

X1

X
2

−5 0 5
−5

0

5

MeanD0
f

Lower boundD−
f

Upper boundD+
f

X1

X
2

−5 0 5
−5

0

5

X1

X
2

−5 0 5
−5

0

5

−4 −2 0 2 4
−5

0

5

X1

X
2

Limit-state margin Probability of misclassification Additional samples
Active learning for reliability RESIM2021 – May 19, 2021 B. Sudret 30 / 50



PC-Kriging

Schöbi & Sudret, IJUQ (2015); Kersaudy et al. , J. Comp. Phys (2015), Schöbi & Sudret, ASCE/ASME JRUEng (2016)

Heuristics: Combine polynomial chaos expansions (PCE) and Kriging

• PCE approximates the global behaviour of the computational model

• Kriging allows for local interpolation and provides a local error estimate

Universal Kriging model with a sparse PC expansion as a trend

M(x) ≈M(PCK)(x) =
∑
α∈A

aαψα(x) + σ2Z(x, ω)

PC-Kriging calibration
• Sequential PC-Kriging: least-angle regression (LAR) detects a sparse basis, then PCE coefficients are calibrated

together with the auto-correlation parameters

• Optimized PC-Kriging: universal Kriging models are calibrated at each step of LAR
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Series system
Schöbi et al. , ASCE J. Risk Unc. (2016)

Consider the system reliability analysis defined by:

g(x) = min


3 + 0.1 (x1 − x2)2 − x1+x2√

2
3 + 0.1 (x1 − x2)2 + x1+x2√

2
(x1 − x2) + 6√

2
(x2 − x1) + 6√

2


where X1, X2 ∼ N (0, 1)

• Initial design: LHS of size 12 (transformed into the standard normal space)

• In each iteration, one point is added (maximize the probability of
missclassification)

• The mean predictor µ
M̂

(x) is used, as well as the bounds µ
M̂

(x)± 2σ
M̂

(x) so as to get bounds on Pf :

P̂−
f
≤ P̂ 0

f ≤ P̂
+
f
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Results with classical Kriging
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Results with PC Kriging
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Active learning reliability methods Teixeira et al. (2021), Moustapha et al. (2021) (submitted)

Numerous papers on active learning in the last few years!

• AK-MCS is a cornerstone for the development of
active learning reliability strategies

• Most methods in the literature are built by
modifying:

– the surrogate model

– the learning function

– the algorithm for reliability estimation

– the stopping criterion
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A module-oriented survey Moustapha et al. (2021) (submitted)

Monte Carlo simulation Subset simulation Importance sampling Other

Kriging
Bichon et. al (2008) Echard et. al (2011)
Hu & Mahadevan (2016) Wen et al. (2016
) Fauriat & Gayton (2017) Jian et. al
(2017) Peijuan et al. (2017) Sun et al.
(2017) Lelievre et al. (2018) Xiao et
al. (2018) Jiang et al. (2019) Tong et
al. (2019) Wang & Shafieezadeh (2019)
Wang & Shafieezadeh (SAMO, 2019)
Zhang, Wang et al. (2019)

Huang et al. (2016) Tong et al. (2015)
Ling et al. (2019) Zhang et al. (2019)

Dubourg et al. (2012) Balesdent et al.
(2013) Echard et al. (2013) Cadini et
al. (2014) Liu et al. (2015) Zhao et al.
(2015) Gaspar et al. (2017) Razaaly et
al. (2018) Yang et al. (2018) Zhang &
Taflanidis (2018) Pan et al. (2020) Zhang
et al. (2020)

Lv et al. (2015) Bo &
HuiFeng (2018) Guo et al.
(2020)

PCE
Chang & Lu (2020) Marelli & Sudret
(2018) Pan et al. (2020)

SVM
Basudhar & Missoum (2013) Lacaze &
Missoum (2014) Pan et al. (2017)

Bourinet et al. (2011) Bourinet (2017)

RSM/RBF
Li et al. (2018) Shi et al. (2019)

Rajakeshir (1993) Rous-
souly et al. (2013)

Neural networks Chojazyck et al. (2015) Gomes et al.
(2019) Li & Wang (2020) [Deep NN] Sundar & Shields (2016)

Chojazyck et al. (2015)

Other
Schoebi & Sudret (2016) Sadoughi et al.
(2017) Wagner et al. (2021)

− U− EFF− Other variance-based− Distance-based− Bootstrap-based− Sensitivity-based− Cross-validation/Ensemble-based− ad-hoc/other
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General framework

Modular framework which consists of independent blocks that can be assembled in a black-box fashion

Surrogate model

Kriging

PCE

SVR

PC-Kriging

Neural networks
...

Reliability estimation

Monte Carlo

Subset simulation

Importance sampling

Line sampling

Directional sampling
...

Learning function

U

EFF

FBR

CMM

SUR
...

Stopping criterion

LF-based

Stability of β

Stability of Pf

Bounds on β

Bounds on Pf

...
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Active learning for reliability analysis

1: Initialization
2: Initial experimental design ED = {χ(1), . . . ,χ(n)}
3: Converged = FALSE
4: while not(Converged) do
5: Train a surrogate model g̃ on the current experimental design
6: Compute the failure probability P̂ 0

f , and its bounds [P̂−
f
, P̂+

f
] using g̃

7: if Stopping criterion fulfilled then
8: Converged = TRUE
9: else

10: Evaluate the learning function LF on X
11: Enrich the ED: χ∗ = arg minx∈X LF (x)
12: Update the experimental design: ED ← ED ∪ {χ∗}
13: end
14: end
15: Return Probability of failure P̂ 0

f and confidence interval [P̂−
f
, P̂+

f
]
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Extensive benchmark: Set-up

Reliability method Surrogate model Learning function Stopping criterion

Monte Carlo simulation
Kriging U

Beta bounds

Subset simulation Beta stability 3 · 2 · 2 · 3 = 36 strategies

Importance sampling
PC-Kriging EFF

Combined

Monte Carlo simulation
PCE FBR Beta stability 3 strategiesSubset simulation

Importance sampling

Subset simulation, Importance sampling w/o metamodel 2 strategies

In total 39 + 2 = 41 strategies are tested
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Selected problems

• 20 problems selected from the literature

• 11 come from the TNO benchmark
(https://rprepo.readthedocs.io/en/latest/)

• Wide spectrum of problems in terms of

– Dimensionality
– Reliability index β = −Φ−1(Pf )

~
~

Problem M Pf,ref Reference

01 (TNO RP14) 5 7.69 · 10−4 Rozsas & Slobbe 2019

02 (TNO RP24) 2 2.90 · 10−3 Rozsas & Slobbe 2019

03 (TNO RP28) 2 1.31 · 10−7 Rozsas & Slobbe 2019

04 (TNO RP31) 2 3.20 · 10−3 Rozsas & Slobbe 2019

05 (TNO RP38) 7 8.20 · 10−3 Rozsas & Slobbe 2019

06 (TNO RP53) 2 3.14 · 10−2 Rozsas & Slobbe 2019

07 (TNO RP54) 20 9.79 · 10−4 Rozsas & Slobbe 2019

08 (TNO RP63) 100 3.77 · 10−4 Rozsas & Slobbe 2019

09 (TNO RP7) 2 9.80 · 10−3 Rozsas & Slobbe 2019

10 (TNO RP107) 10 2.85 · 10−7 Rozsas & Slobbe 2019

11 (TNO RP111) 2 7.83 · 10−7 Rozsas & Slobbe 2019

12 (4-branch series) 2 3.85 · 10−4 Echard et al. (2011)

13 (Hat function) 2 4.40 · 10−3 Schoebi et al. (2016)

14 (Damped oscillator) 8 4.80 · 10−3 Der Kiureghian (1990)

15 (Non-linear oscillator) 6 3.47 · 10−7 Echard et al. (2011,2013)

16 (Frame) 21 2.25 · 10−4 Echard et al. (2013)

17 (HD function) 40 2.00 · 10−3 Sadoughi et al. (2017)

18 (VNL function) 40 1.40 · 10−3 Bichon et al. (2008)

19 (Transmission tower 1) 11 5.76 · 10−4 FEM (172 bars, 51 nodes)

20 (Transmission tower 2) 9 6.27 · 10−4 FEM (172 bars, 51 nodes)
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Comparison of the various strategies

Approximately 12, 000 reliability analyses were run:
41 strategies - 20 problems - 15 replications

Three evaluation criteria:

• Number of model evaluations: Neval

• Accuracy: ε = |β − βref| /βref

• Efficiency: ∆ = εNeval/Nmed

where Nmed is the median number of model
evaluations for each problem

For each criterion:

• Ranking of the strategies as a whole

• Ranking of the methods within each block

• Performance of the methods w.r.t. problem
feature (dimensionality, range of Pf )
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Ranking of the strategies

Percentage of times a strategy is ranked 1st, 2nd, ..., 41st w.r.t. ∆

1

10

20

30

41

All strategies

1

10

20

30

41

Best 10 strategies

• Best approach: PC-Kriging + SuS + U + Combined stopping criterion

• Worst approaches: Direct SuS and Direct IS
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Results aggregated by method

Percentage of times a method is first or in the Top 5, 10, 20 w.r.t. ∆ (regardless of the strategy)

• Surrogates: PC-Kriging dominates by far

• Reliability: Slight advantage to subset simulation

• Learning function: U dominates both EFF and FBR

• Stopping criterion: Slight advantage to the stability criterion
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Influence of the dimension

Results aggregated w.r.t. to dimension (M < 20 v.s. 20 ≤M ≤ 100)

• Kriging performs worse in large dimension but not PCK and PCE

• As expected MCS is insensitive to dimension, SuS and especially IS have
worse performance for M ≥ 20

• The learning functions reproduce the performance of the surrogate models

• The β bound criterion which is based on the Kriging variance performs
poorly in high dimension
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Influence of the target reliability index

Results aggregated w.r.t. to dimension (β < 3.5 vs. β ≥ 3.5)

• PC-Kriging is not so much sensitive to βref while Kriging and PCE
perform worse for larger values of βref

• SuS and IS are not so much affected by βref compared to MCS

• EFF performs worse than U for larger values of βref

• β-stability and combined criteria have a noticeably poorer performance for
larger values of βref
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Results without surrogates
Relative error for overkill reliability methods without surrogates

• Red lines correspond to non-convergence
• The problems that could not be solved with ALR were not solved by a direct approach (i.e. , without surrogate)

either

In most cases, the surrogate model was not the cause of failure of the ALR strategy, but rather the
reliability estimation algorithm
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Summary of the results

Recommendations w.r.t. the problem feature

Module Dimensionality Magnitude of the reliability index

M < 20 20 ≤M ≤ 100 β < 3.5 β ≥ 3.5
Surrogate model PCK PCE PCE/PCK PCK

Reliability method SuS SuS SuS SuS

Learning function U FBR U/FBR U

Stopping criterion βbo,βco βbo / βco βbo,βco βbo

Main take-away

There is no drawback in using surrogates compared to a direct solution
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TNO Benchmark: performance of UQLab “ALR” module Rozsas & Slobbe (2019)

• Truly black-box benchmark with 27 problems

• Limit state functions not known to the participants and only accessible through an anonymous server

• Our solution: the “best approach” previously highlighted (PCK + SuS + U + Co)

Summary plot (TNO)
• Reference solution: black line

• Zero, one or more points per participant

• X: number of runs (log scale)

• Y: obtained β index

best approach: “on the line / to the left”
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TNO Benchmark: performance of UQLab “ALR” module Rozsas & Slobbe (2019)

Component reliability System reliability
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Conclusions

• Estimating low probabilities of failure in high-dimensional problems requires more refined algorithms than plain MCS

• Recent research on surrogate models (e.g. Kriging and polynomial chaos expansions) and active learning has
brought new extremely efficient algorithms

• Accurate estimations of Pf ’s (not of β !) are obtained with O(100) runs of the computer code independently of
their magnitude

• All the presented algorithms are available in the general-purpose uncertainty quantification software UQLab (V.1.4,
“Active learning reliability” module)
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www.uqlab.com
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UQLab: The Uncertainty Quantification Software

• free access to academia

• More than 3,600 registered users

• 1,400+ active users from 92 countries

http://www.uqlab.com

• The cloud version of UQLab, accessible via
an API (SaaS)

• Available with python bindings for beta
testing

https://uqpylab.uq-cloud.io/

Country # Users

United States 582

China 500

France 339

Switzerland 285

Germany 270

United Kingdom 157

Italy 145

Brazil 126

India 120

Canada 87

As of May 15, 2021
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UQWorld: the community of UQ https://uqworld.org/
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Questions ?

Chair of Risk, Safety & Uncertainty Quantification
www.rsuq.ethz.ch

The Uncertainty Quantification
Software

www.uqlab.com

The Uncertainty Quantification
Community

www.uqworld.org

Thank you very much for your attention !
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