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Reliability Modelling

Reliability models: how reliable is my system?
• Unavailability: long-term average fraction

of time that system is failed.
• Unreliability: probability that system fails within τ time

units, τ ∈ (0,∞).
The failures and repairs of system components can be modelled
using a semi-Markov Chain.

Given description of system as semi-Markov chain, unavailability
and unreliability can be estimated using simulation.

Prior work:1,2 unavailability, so we focus on unreliability.
1R., de Boer, Scheinhardt, and Juneja. “Path-ZVA: General, efficient, and automated

importance sampling for highly reliable Markovian systems.” ACM TOMACS, 2018.
2Ruijters, R., de Boer, and Stoelinga. “Rare event simulation for dynamic fault trees.”

Reliability Engineering & System Safety, 2019.
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Unreliability

s 1 2 3 4 g

X

Let X be the countable state space of the system model, i.e.,
which, or how many, components are working or not.

Some states represent system failure.
• w.l.o.g.: single “goal” state g .

Unreliability: probability π that, starting from s ∈ X , we reach
state g ∈ X before time τ > 0.

Toy example: single component with 4 spares. System fails
when component and all spares have failed.
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Reliability Modelling: Toy Example

Expected time before failure of active component: λ−1. Here, λ
need not be rate of exponential distribution!

Group repair: repair process is reset whenever a new component
fails, but when it is completed all components are repaired.
(⇒ semi-Markov!)

As with failures, the probability distribution of repair times need
not be exponential – e.g., Weibull or approximately normal.

s 1 2 3 4 gλ λ λ λ λ
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Semi-Markov Chains

Semi-Markov chain: model the transitions between states in X .3

Two stochastic processes:
1 Xn ∈ X , the system state after the nth state transition,
2 Tn ∈ R+, the time spent in state Xn−1.

The process Xn is a discrete-time Markov chain (DTMC), i.e.,
only depends on the current state and not on previous states.

If Tn are drawn from the exponential distribution, then (Xn,Tn)
is a continuous-time Markov chain.

3Limnios and Oprisan. Semi-Markov processes and reliability. 2012.
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Semi-Markov Chains: Definition

Two common definitions of semi-Markov process.

Our focus: let T ′nz be the potential transition times for all steps
n ∈ N and x ∈ X , defined as follows:

P(T ′nx ≤ t) = FXn−1x (t).

Then Xn = x and Tn = t if and only if:

x = argmin
y∈X

T ′ny and t = T ′nx .

Simulation: in each time step n, draw all potential transition
times t ′ny , determine which time t = miny t ′ny is smallest, then
move to corresponding state at time t.
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Rarity in Semi-Markov Chains
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Unreliability is probability π of reaching g before time bound τ .

If π is small, e.g., because component repairs occur more rapidly
than component failures, then π is hard to estimate.

Formal notion of rarity: rarity parameters ε and rxy .
If rxy > 0, then if ε ↓ 0 it becomes unlikely for the potential
transition time from x to y to be small.
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Rarity in Semi-Markov Chains
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For each pair of states x , y ∈ X we define rxy ≥ 0 such that

Fxy (t) = Θ(εrxy ),
that is,

lim
ε↓0

Fxy (t)
εrxy

= ct , such that 0 < ct <∞ for all t ∈ R+

Typically, rxy > 0 for failure transitions, and rxy = 0 for repair
transitions.
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Importance Sampling

Importance sampling: in each step, instead of original combined
distribution Fx for potential transition times from x , use
distribution Gx that makes the rare event more likely.

To produce an unbiased estimate, we weight each sample path ω
of size n with its likelihood ratio L:

L(ω) =
n∏

i=1

dFxi−1((t ′iy )y∈X )
dGxi−1((t ′iy )y∈X )

Question: how to choose the new distribution Gx ?

Non-trivial choice: if made poorly, variance of estimator will be
higher (or even infinite).
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Zero-Variance Approximation

How to choose Gx ?
• Zero-Variance Approximation (ZVA):4 base the new

probability of jumping to a state on the approximated
likelihood of observing the rare event from that state.

Let v(x) ∈ [0, 1] be a guess for the probability of observing the
rare event, given current state x ∈ X .
• Path-ZVA: base v(x) on the shortest paths (in terms of ε)

from x to the system failure state g .

We determine the shortest paths numerically, i.e., using
Dijkstra’s method – no need to consider states that are
harder to reach from s than g .

Numerical method also removes high-probability cycles.
4L’Ecuyer and Tuffin. “Approximate zero-variance simulation.” Winter

Simulation Conference, 2008.
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Proposed Approach

Proposed approach:

Gx ((ty )y∈X ) =
∑
z∈X

pxzHxz(txz)
∏

y∈X
y 6=z

Fxy (txy )

Intuition: in each step, pick a “target” state Z using v :

pxz = P(Z = z |X = x) ∼ εrxz v(z)
v(x) .

Speed up the transition to z if this step is ε-hard. Baseline:

Hxz(t) = Fxz(ε−rxz t).

However, we will also explore alternatives.
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Experiments

We use simulation experiments to evaluate the performance of
our estimator π̂. We use 107 runs in all cases.

Goal: Bounded Relative Error (BRE):

lim
ε→0

√
Var(π̂)
π

<∞

BRE ⇔ relative c.i. width bounded.

General conditions known for BRE are known for DTMCs.5

5Nakayama. “General conditions for bounded relative error in simulations
of highly reliable Markovian systems.” Advances in Applied Probability,
1996.

12/28



Experiments

We consider two distributions for failures/repairs:
1 Exponential(λ)
2 Weibull(2, λ)
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f (x) = λe−λx f (x) = 2λ2xe−(λx)2
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Experiment 1: Toy Example

We consider four settings for the toy example:

rel. c.i. half-width
setting failures failures sim. repairs (N = 107)

1 Exp(ε) Exp(1) Exp(1) ≈ 0.05
2 Exp(ε) Exp(1) Weib(2,1) ≈ 0.05
3 Weib(2,ε) Weib(2,1) Weib(2,1) ≈ 0.75
4 Weib(2,ε) Exp(1) Weib(2,1) ≈ 0.25

s 1 2 3 4 gε ε ε ε ε

14/28



Experiment 1: Toy Example

10−510−410−310−210−1100
10−26

10−20

10−14

10−8

10−2

ε

π̂

1-dim., exp./exp.

Importance Sampling
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Experiment 1: Toy Example
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Experiment 1: Toy Example
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Experiment 2: 2-dimensional system

Generalization: two component types, system fails if there are 5
or more failed components in total.

We consider the three cases as before (exp./exp., exp./weib.,
weib./weib.). Also, a bad IS scheme, in which we bias both
failure transitions in each round instead of choosing a target.

s

g
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Experiment 2: 2-dimensional system
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Experiment 2: 2-dimensional system
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Experiment 2: 2-dimensional system
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Experiment 2: 2-dimensional system
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Experiment 3: Realistic System

So far, toy examples. Realistic system model:
Distributed Database System (DDS).

Nine component types, system fails if two of any type have
failed. Dedicated repair per type.

State space size: thousands. Numerical solutions doable for
Markov chains, not for general distributions (such as Weibull).
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Experiment 3: Realistic System
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Experiment 3: Realistic System
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Experiment 3: Realistic System
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Conclusions

Experiments show that our method works well for some classes
of semi-Markov processes.

Future work:
• Good performance for distributions with an exponential tail,

but what about other (e.g., power tail) distributions?

• Prove bounded relative error. Can we also show vanishing
relative error?

• Can our approach be extended to generalized semi-Markov
processes (GSMPs)?
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Conclusions

Thank you!
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