Path-ZVA Simulation Method for Time-Bounded Rare Events in a Semi-Markov Chain

Daniël Reijsbergen, Pieter-Tjerk de Boer, and Werner Scheinhardt

UNIVERSITY OF TWENTE

Table of Contents

- [Semi-Markov Chains](#page-5-0)
- [Rare Events](#page-7-0)
- 2 [Proposed Method](#page-9-0)
	- [Importance Sampling](#page-9-0)
	- [Zero-Variance Approximation](#page-10-0)
	- [Path-ZVA for semi-Markov Chains](#page-11-0)

3 [Evaluation](#page-12-0)

[Conclusion](#page-28-0)

Reliability Modelling

Reliability models: how reliable is my system?

Unavailability: long-term average fraction of time that system is failed.

• Unreliability: probability that system fails within *τ* time units, $\tau \in (0, \infty)$.

The *failures* and *repairs* of system components can be modelled using a semi-Markov Chain.

Given description of system as semi-Markov chain, unavailability and unreliability can be estimated using simulation.

Prior work:1*,*² unavailability, so we focus on **unreliability**.

 $1R$., de Boer, Scheinhardt, and Juneja. "Path-ZVA: General, efficient, and automated importance sampling for highly reliable Markovian systems." ACM TOMACS, 2018.

 2 Ruijters, R., de Boer, and Stoelinga. "Rare event simulation for dynamic fault trees." Reliability Engineering & System Safety, 2019.

Unreliability

Let $\mathcal X$ be the countable state space of the system model, i.e., which, or how many, components are working or not.

Some states represent system failure.

w.l.o.g.: single "goal" state g .

Unreliability: probability π that, starting from $s \in \mathcal{X}$, we reach state $g \in \mathcal{X}$ before time $\tau > 0$.

Toy example: single component with 4 spares. System fails when component and all spares have failed.

Expected time before failure of active component: λ^{-1} . Here, λ need not be rate of exponential distribution!

Group repair: repair process is reset whenever a new component fails, but when it is completed all components are repaired. $(\Rightarrow$ semi-Markov!)

As with failures, the probability distribution of repair times need not be exponential – e.g., Weibull or approximately normal.

Semi-Markov chain: model the transitions between states in $\mathcal{X}.^3$

Two stochastic processes:

- 1 $X_n \in \mathcal{X}$, the system state after the *n*th state transition,
- 2 $T_n \in \mathbb{R}^+$, the time spent in state X_{n-1} .

The process X_n is a discrete-time Markov chain (DTMC), i.e., only depends on the current state and not on previous states.

If T_n are drawn from the exponential distribution, then (X_n, T_n) is a continuous-time Markov chain.

 3 Limnios and Oprisan. *Semi-Markov processes and reliability*. 2012.

Two common definitions of semi-Markov process.

Our focus: let T'_{nz} be the *potential* transition times for all steps $n \in \mathbb{N}$ and $x \in \mathcal{X}$, defined as follows:

$$
\mathbb{P}(T'_{nx} \leq t) = F_{X_{n-1}x}(t).
$$

Then $X_n = x$ and $T_n = t$ if and only if:

$$
x = \underset{y \in \mathcal{X}}{\text{argmin}} \; T'_{ny} \quad \text{ and } \quad t = T'_{nx}.
$$

Simulation: in each time step n , draw all potential transition times t'_{ny} , determine which time $t = \mathsf{min}_y \; t'_{ny}$ is smallest, then move to corresponding state at time t.

Rarity in Semi-Markov Chains

Unreliability is probability *π* of reaching g before time bound *τ* .

If *π* is small, e.g., because component repairs occur more rapidly than component failures, then π is hard to estimate.

Formal notion of rarity: rarity parameters ϵ and $r_{\rm xv}$. If $r_{xy} > 0$, then if $\epsilon \downarrow 0$ it becomes unlikely for the potential transition time from x to y to be small.

Rarity in Semi-Markov Chains

For each pair of states $x, y \in \mathcal{X}$ we define $r_{xy} \geq 0$ such that

$$
F_{xy}(t)=\Theta(\epsilon^{r_{xy}}),
$$

that is,

$$
\lim_{\epsilon \downarrow 0} \frac{F_{xy}(t)}{\epsilon^{r_{xy}}} = c_t, \text{ such that } 0 < c_t < \infty \text{ for all } t \in \mathbb{R}^+
$$

Typically, $r_{xy} > 0$ for failure transitions, and $r_{xy} = 0$ for repair transitions.

Importance sampling: in each step, instead of original combined distribution F_x for potential transition times from x, use distribution G_x that makes the rare event more likely.

To produce an unbiased estimate, we weight each sample path *ω* of size n with its likelihood ratio L:

$$
L(\omega) = \prod_{i=1}^{n} \frac{dF_{x_{i-1}}((t'_{iy})_{y \in \mathcal{X}})}{dG_{x_{i-1}}((t'_{iy})_{y \in \mathcal{X}})}
$$

Question: how to choose the new distribution G_{x} ?

Non-trivial choice: if made poorly, variance of estimator will be higher (or even infinite).

Zero-Variance Approximation

How to choose G_{γ} ?

• Zero-Variance Approximation $(ZVA)^4$ base the new probability of jumping to a state on the approximated likelihood of observing the rare event from that state.

Let $v(x) \in [0, 1]$ be a guess for the probability of observing the rare event, given current state $x \in \mathcal{X}$.

• Path-ZVA: base $v(x)$ on the shortest paths (in terms of ϵ) from x to the system failure state g .

We determine the shortest paths numerically, *i.e.*, using Dijkstra's method – no need to consider states that are harder to reach from s than g .

Numerical method also removes high-probability cycles.

⁴L'Ecuyer and Tuffin. "*Approximate zero-variance simulation.*" Winter Simulation Conference, 2008.

Proposed Approach

Proposed approach:

$$
G_{x}((t_{y})_{y\in\mathcal{X}})=\sum_{z\in\mathcal{X}}p_{xz}H_{xz}(t_{xz})\prod_{\substack{y\in\mathcal{X}\\y\neq z}}F_{xy}(t_{xy})
$$

Intuition: in each step, pick a "target" state Z using v :

$$
p_{xz} = \mathbb{P}(Z = z | X = x) \sim \frac{\epsilon^{r_{xz}} v(z)}{v(x)}.
$$

Speed up the transition to z if this step is ϵ -hard. Baseline:

$$
H_{xz}(t)=F_{xz}(\epsilon^{-r_{xz}}t).
$$

However, we will also explore alternatives.

Experiments

We use simulation experiments to evaluate the performance of our estimator $\hat{\pi}$. We use 10^7 runs in all cases.

Goal: Bounded Relative Error (BRE):

$$
\lim_{\epsilon\to 0}\frac{\sqrt{\text{Var}(\hat{\pi})}}{\pi}<\infty
$$

BRE \Leftrightarrow relative c.i. width bounded.

General conditions known for BRE are known for DTMCs.⁵

⁵Nakayama. "General conditions for bounded relative error in simulations of highly reliable Markovian systems." Advances in Applied Probability, 1996.

Experiments

We consider two distributions for failures/repairs:

- Exponential(*λ*)
- 2 Weibull $(2, \lambda)$

We consider four settings for the toy example:

Generalization: two component types, system fails if there are 5 or more failed components in total.

We consider the three cases as before (exp./exp., exp./weib., weib./weib.). Also, a *bad* IS scheme, in which we bias *both* failure transitions in each round instead of choosing a target.

So far, toy examples. Realistic system model: Distributed Database System (DDS).

Nine component types, system fails if two of any type have failed. Dedicated repair per type.

State space size: thousands. Numerical solutions doable for Markov chains, not for general distributions (such as Weibull).

Conclusions

Experiments show that our method works well for some classes of semi-Markov processes.

Future work:

- Good performance for distributions with an exponential tail, but what about other (e.g., power tail) distributions?
- Prove bounded relative error. Can we also show vanishing relative error?
- Can our approach be extended to generalized semi-Markov processes (GSMPs)?

Thank you!