Path-ZVA Simulation Method for Time-Bounded Rare Events in a Semi-Markov Chain

Daniël Reijsbergen, Pieter-Tjerk de Boer, and Werner Scheinhardt



# UNIVERSITY OF TWENTE.

## Table of Contents



- Semi-Markov Chains
- Rare Events
- 2 Proposed Method
  - Importance Sampling
  - Zero-Variance Approximation
  - Path-ZVA for semi-Markov Chains

#### 3 Evaluation

#### 4 Conclusion

## Reliability Modelling

Reliability models: how reliable is my system?

• Unavailability: long-term average fraction of time that system is failed.



Unreliability: probability that system fails within τ time units, τ ∈ (0,∞).

The *failures* and *repairs* of system components can be modelled using a *semi-Markov Chain*.

Given description of system as semi-Markov chain, unavailability and unreliability can be estimated using *simulation*.

Prior work:<sup>1,2</sup> unavailability, so we focus on *unreliability*.

<sup>&</sup>lt;sup>1</sup>R., de Boer, Scheinhardt, and Juneja. "*Path-ZVA: General, efficient, and automated importance sampling for highly reliable Markovian systems.*" ACM TOMACS, 2018.

<sup>&</sup>lt;sup>2</sup>Ruijters, R., de Boer, and Stoelinga. "*Rare event simulation for dynamic fault trees.*" Reliability Engineering & System Safety, 2019.

## Unreliability

Let  $\mathcal{X}$  be the countable state space of the system model, i.e., which, or how many, components are working or not.

Some states represent system failure.

• w.l.o.g.: single "goal" state g.

Unreliability: probability  $\pi$  that, starting from  $s \in \mathcal{X}$ , we reach state  $g \in \mathcal{X}$  before time  $\tau > 0$ .

Toy example: single component with 4 spares. System fails when component and all spares have failed.



Expected time before failure of active component:  $\lambda^{-1}$ . Here,  $\lambda$  need not be rate of exponential distribution!

*Group repair*: repair process is reset whenever a new component fails, but when it is completed all components are repaired. ( $\Rightarrow$  semi-Markov!)

As with failures, the probability distribution of repair times need not be exponential - e.g., Weibull or approximately normal.



Semi-Markov chain: model the transitions between states in  $\mathcal{X}$ .<sup>3</sup>

*Two* stochastic processes:

- 1  $X_n \in \mathcal{X}$ , the system state after the *n*th state transition,
- 2  $T_n \in \mathbb{R}^+$ , the time spent in state  $X_{n-1}$ .

The process  $X_n$  is a *discrete-time Markov chain (DTMC*), i.e., only depends on the current state and not on previous states.

If  $T_n$  are drawn from the exponential distribution, then  $(X_n, T_n)$  is a continuous-time Markov chain.

<sup>&</sup>lt;sup>3</sup>Limnios and Oprisan. *Semi-Markov processes and reliability*. 2012.

Two common definitions of semi-Markov process.

Our focus: let  $T'_{nz}$  be the *potential* transition times for all steps  $n \in \mathbb{N}$  and  $x \in \mathcal{X}$ , defined as follows:

$$\mathbb{P}(T'_{nx} \leq t) = F_{X_{n-1}x}(t).$$

Then  $X_n = x$  and  $T_n = t$  if and only if:

$$x = \operatorname*{argmin}_{y \in \mathcal{X}} T'_{ny}$$
 and  $t = T'_{nx}$ .

Simulation: in each time step n, draw all potential transition times  $t'_{ny}$ , determine which time  $t = \min_y t'_{ny}$  is smallest, then move to corresponding state at time t.

### Rarity in Semi-Markov Chains

Unreliability is probability  $\pi$  of reaching g before time bound  $\tau$ .

If  $\pi$  is small, e.g., because component repairs occur more rapidly than component failures, then  $\pi$  is hard to estimate.

Formal notion of *rarity*: rarity parameters  $\epsilon$  and  $r_{xy}$ . If  $r_{xy} > 0$ , then if  $\epsilon \downarrow 0$  it becomes unlikely for the potential transition time from x to y to be small.



#### Rarity in Semi-Markov Chains

For each pair of states  $x, y \in \mathcal{X}$  we define  $r_{xy} \ge 0$  such that

$$F_{xy}(t) = \Theta(\epsilon^{r_{xy}}),$$

that is,

$$\lim_{\epsilon \downarrow 0} \frac{F_{xy}(t)}{\epsilon^{r_{xy}}} = c_t, \text{ such that } 0 < c_t < \infty \ \text{ for all } t \in \mathbb{R}^+$$

Typically,  $r_{xy} > 0$  for failure transitions, and  $r_{xy} = 0$  for repair transitions.



*Importance sampling*: in each step, instead of original combined distribution  $F_x$  for potential transition times from x, use distribution  $G_x$  that makes the rare event more likely.

To produce an unbiased estimate, we weight each sample path  $\omega$  of size *n* with its *likelihood ratio L*:

$$L(\omega) = \prod_{i=1}^{n} \frac{dF_{x_{i-1}}((t'_{iy})_{y \in \mathcal{X}})}{dG_{x_{i-1}}((t'_{iy})_{y \in \mathcal{X}})}$$

Question: how to choose the new distribution  $G_x$ ?

Non-trivial choice: if made poorly, variance of estimator will be higher (or even infinite).

## Zero-Variance Approximation

How to choose  $G_x$ ?

• Zero-Variance Approximation (ZVA):<sup>4</sup> base the new probability of jumping to a state on the approximated likelihood of observing the rare event from that state.

Let  $v(x) \in [0, 1]$  be a guess for the probability of observing the rare event, given current state  $x \in \mathcal{X}$ .

Path-ZVA: base v(x) on the shortest paths (in terms of ε) from x to the system failure state g.

We determine the shortest paths numerically, i.e., using Dijkstra's method – no need to consider states that are harder to reach from s than g.

Numerical method also removes high-probability cycles.

<sup>&</sup>lt;sup>4</sup>L'Ecuyer and Tuffin. "*Approximate zero-variance simulation*." Winter Simulation Conference, 2008.

### Proposed Approach

Proposed approach:

$$G_{x}((t_{y})_{y\in\mathcal{X}}) = \sum_{z\in\mathcal{X}} p_{xz}H_{xz}(t_{xz})\prod_{\substack{y\in\mathcal{X}\\y\neq z}} F_{xy}(t_{xy})$$

Intuition: in each step, pick a "target" state Z using v:

$$p_{xz} = \mathbb{P}(Z = z | X = x) \sim rac{\epsilon^{r_{xz}} v(z)}{v(x)}.$$

Speed up the transition to z if this step is  $\epsilon$ -hard. Baseline:

$$H_{xz}(t)=F_{xz}(\epsilon^{-r_{xz}}t).$$

However, we will also explore alternatives.

### Experiments

We use simulation experiments to evaluate the performance of our estimator  $\hat{\pi}$ . We use  $10^7$  runs in all cases.

Goal: Bounded Relative Error (BRE):

$$\lim_{\epsilon \to 0} \frac{\sqrt{\mathsf{Var}(\hat{\pi})}}{\pi} < \infty$$

 $\mathsf{BRE} \Leftrightarrow \mathsf{relative c.i.} \ \mathsf{width} \ \mathsf{bounded}.$ 

General conditions known for BRE are known for DTMCs.<sup>5</sup>

<sup>&</sup>lt;sup>5</sup>Nakayama. "General conditions for bounded relative error in simulations of highly reliable Markovian systems." Advances in Applied Probability, 1996.

## Experiments

We consider two distributions for failures/repairs:

- 1 Exponential( $\lambda$ )
- 2 Weibull(2,  $\lambda$ )



We consider four settings for the toy example:

|         |                     |               |           | rel. c.i. half-width |
|---------|---------------------|---------------|-----------|----------------------|
| setting | failures            | failures sim. | repairs   | $(N = 10^7)$         |
| 1       | $Exp(\epsilon)$     | Exp(1)        | Exp(1)    | pprox 0.05           |
| 2       | $Exp(\epsilon)$     | Exp(1)        | Weib(2,1) | pprox 0.05           |
| 3       | $Weib(2,\epsilon)$  | Weib(2,1)     | Weib(2,1) | pprox 0.75           |
| 4       | Weib $(2,\epsilon)$ | Exp(1)        | Weib(2,1) | pprox 0.25           |











Generalization: two component types, system fails if there are 5 or more failed components in total.

We consider the three cases as before (exp./exp., exp./weib., weib./weib.). Also, a *bad* IS scheme, in which we bias *both* failure transitions in each round instead of choosing a target.











So far, toy examples. Realistic system model: *Distributed Database System (DDS)*.

Nine component types, system fails if two of any type have failed. Dedicated repair per type.

State space size: thousands. Numerical solutions doable for Markov chains, not for general distributions (such as Weibull).









## Conclusions

Experiments show that our method works well for some classes of semi-Markov processes.

Future work:

- Good performance for distributions with an exponential tail, but what about other (e.g., power tail) distributions?
- Prove bounded relative error. Can we also show vanishing relative error?
- Can our approach be extended to generalized semi-Markov processes (GSMPs)?



Thank you!