# THE WEIGHTED ENSEMBLE METHOD FOR SAMPLING STEADY STATES

Joint work with:

Gideon Simpson (Drexel University) Rob Webber (NYU/Caltech) Dan Zuckerman (Oregon Health & Science University)

Special thanks to Mathias Rousset

**WEIGHTED ENSEMBLE** is an interacting particle importance sampling method.

It is used to estimate distributions of a Markov chain.

The particles evolve according to this Markov chain in between <u>resampling</u> steps, where the particles are grouped into <u>bins</u> and each bin is resampled.



### Why weighted ensemble is important:

**1.** It is the only importance sampling method for general Markov chain steady states — that admit no explicit formulae — *without a finite particle number bias.* 

**2.** It is a very <u>simple and flexible</u> algorithm. You can put particles wherever you like by appropriately choosing bins and the number of "samples" in each bin.

**3.** With appropriate parameter choices, it approaches the <u>smallest possible</u> <u>variance</u> among all unbiased (resampling-based) interacting particle methods.

#### Weighted ensemble is a variance reduction importance sampling method.

However, it is often used in conjunction with the *Hill relation*, which says that

mean first passage time from 
$$\rho$$
 to  $B = \frac{1}{\mu(B)}$ 

for a Markov chain, with steady state  $\mu$ , that is recycled at  $\rho$  upon reaching B.

Such mean first passage times are important in many applications — we have in mind computational chemistry, where they could represent the typical time for a ligand (drug) to bind with a protein (B = unbound state). Efficient computation of these times would could pave the way towards in silico drug design.

The Hill relation converts a long-time computation — typically hampered by metastability — to a rare event problem, namely the estimation of  $\mu(B) \approx 0$ . Introducing the recycling can remove the metastability in many situations.

#### Unbiased particle methods:

Starting\*\* with weights summing to 1, at each time:

- 1. Resample from the current particles.
- 2. Weight of sampled particle = (old weight)/(mean #samples of the particle).
- 3. Evolve the resampled particles one step according to the Markov chain.

\*\*To simplify presentation, we'll always assume a deterministic initial condition.



## Weighted ensemble (special case of unbiased methods):

Starting with weights summing to 1, at each time:

- 1. Divide (partition) the current particles into bins.
- 2. In each bin, resample from the particles according to their weights.
- **3.** Assign weight to sampled particle = (its bin weight)/(#samples in its bin).
- 4. Evolve the resampled particles one step according to the Markov chain.



Before resampling at time *t*, particles are  $\xi_t^1, \ldots, \xi_t^N$  and weights are  $w_t^1, \ldots, w_t^N$ . After resampling at time *t*, particles are  $\hat{\xi}_t^1, \ldots, \hat{\xi}_t^N$  and weights are  $\hat{w}_t^1, \ldots, \hat{w}_t^N$ .

### Weight update rule for unbiased methods:

$$\hat{w}_t^i = \frac{w_t^j}{\text{mean $\#$copies of $\xi_t^j$}}, \quad \text{if $\hat{\xi}_t^i$ is copied from $\xi_t^j$}.$$

## Weight update rule for weighted ensemble (special case of above):

 $\hat{w}_t^i = \frac{\text{total weight in bin } u}{\text{#copies in bin } u}$ , if  $\hat{\xi}_t^i$  is copied from a particle in bin u.

#### Mathematical analysis based on martingale variance decomposition:

The variance of the Doob martingale

$$D_t = \mathbb{E}\left[\frac{1}{T}\sum_{t=0}^{T-1}\sum_{i=1}^{N} w_t^i f(\xi_t^i) \,\middle|\, \mathcal{F}_t\right], \hat{D}_t = \mathbb{E}\left[\frac{1}{T}\sum_{t=0}^{T-1}\sum_{i=1}^{N} w_t^i f(\xi_t^i) \,\middle|\, \hat{\mathcal{F}}_t\right]$$

decomposes as

$$\operatorname{Var}\left(\underbrace{\frac{1}{T}\sum_{t=0}^{T-1}\sum_{i=1}^{N}w_{t}^{i}f(\xi_{t}^{i})}_{=D_{T-1}}\right) = \underbrace{\frac{1}{T^{2}}\sum_{t=0}^{T-2}\operatorname{Var}\left(D_{t+1}\left|\left.\widehat{\mathscr{F}}_{t}\right.\right)}_{\text{evolution variance}} + \underbrace{\frac{1}{T^{2}}\sum_{t=0}^{T-2}\operatorname{Var}\left(\hat{D}_{t}\right|\left.\mathscr{F}_{t}\right)}_{\text{resampling variance}}$$

We'll assume that f is a bounded function.

**Theorem 1.** Suppose *K*, the evolution kernel, is geometrically ergodic wrt  $\mu$ . If the weights always sum to 1, then  $\lim_{T \to \infty} \frac{1}{T} \sum_{t=0}^{T-1} \sum_{i=1}^{N} w_t^i f(\xi_t^i) = \mu(f)$  a.s.

If the sum of the weights fluctuates, then this ergodic theorem fails.

$$\begin{aligned} \underline{Proof \ idea:} \ \text{Define} \ h_{t,T}(\xi) &= \sum_{s=0}^{T-t-1} K^s f. \ \text{By martingale variance decomposition,} \\ \text{Var} \left( \frac{1}{T} \sum_{t=0}^{T-1} \sum_{i=1}^{N} w_t^i f(\xi_t^i) \right) &= \\ \frac{1}{T^2} \sum_{t=0}^{T-2} \mathbb{E} \left[ \left| \text{Var} \left( \sum_{i=1}^{N} w_{t+1}^i h_{t+1,T}(\xi_{t+1}^i) \middle| \hat{\mathscr{F}}_t \right) + \text{Var} \left( \sum_{i=1}^{N} \hat{w}_t^i K h_{t+1,T}(\hat{\xi}_t^i) \middle| \mathscr{F}_t \right) \right]. \end{aligned}$$

Under *uniform* ergodicity,  $h_{t,T} - (T - t)\mu(f)$  is uniformly bounded in *t* and *T*. Thus, *if the weights sum to 1*, then the variance above is O(1/T) as  $T \to \infty$ . But, *if the total weight fluctuates at each time*, the variance is "typically" O(T).

#### Theorem 2:

Any conditionally independent resampling scheme<sup>\*\*</sup> with weights summing to 1,  $w_t^1 + \ldots + w_t^N = \hat{w}_t^1 + \ldots + \hat{w}_t^N = 1$ , is equivalent to weighted ensemble.

### Proof:

Using  $\sum_{i} \hat{w}_{t}^{i} = 1$  and independence,  $0 = \operatorname{Var}\left(\sum_{i} \hat{w}_{t}^{i}\right) = \sum_{i} \operatorname{Var}\left(\hat{w}_{t}^{i}\right)$ . So each  $\hat{w}_{t}^{i}$  is constant. Choose bins based on the constant values  $\hat{w}_{t}^{i}$  takes.

\*\*conditionally independent means independent given some auxiliary information, and includes most common methods like multinomial, residual multinomial, stratified, Bernoulli, etc.

## <u>Corollary</u>: WE is the <u>ONLY</u> method that converges exactly to $\mu(f)$ w.p. 1.

Other unbiased methods have exploding variance. This can be controlled by dividing by the total weight, but at the cost of a 1/N finite particle number bias.

### Why would a 1/N bias matter?

Because for ergodic averages, the variance is order 1/(NT). So for large times *T*, a 1/N bias would dominate the mean squared error.\*\*\*

This differs from typical SMC — based on time marginals — where the bias and variance are both 1/N, and the variance dominates the mean squared error.

\*\*\*moreover, in complex problems, typically only small N can be afforded.

Theorem 3: Weighted ensemble can approach the lowest possible variance.

More specifically, assume K is geometrically ergodic wrt  $\mu$  and define

$$\begin{split} w_t(u) &= \text{total weight in bin } u \text{ at time } t, \\ N_t(u) &= \text{ #of samples in bin } u \text{ at time } t, \\ \eta_t^u &= \sum_{\substack{\xi_t^i \in \text{bin } u}} \frac{w_t^i}{w_t(u)} \delta_{\xi_t^i} = \text{particle distribution in bin } u \text{ at time } t, \\ h &= \lim_{T \to \infty} \left( h_{t,T} - (T - t) \mu(f) \right) = \text{solution to Poisson eqn } (I - K)h = f - \mu(f). \end{split}$$

Then with enough particles and bins and multinomial resampling, if we choose

$$N_t(u) \approx \frac{N w_t(u) \sqrt{\eta_t^u(\text{Var}_K h)}}{\sum_{\text{bins } u} w_t(u) \sqrt{\eta_t^u(\text{Var}_K h)}}$$

then we approach the lowest possible variance among all unbiased methods.

#### Proof sketch:

$$\operatorname{Var}\left(\frac{1}{T}\sum_{t=0}^{T-1}\sum_{i=1}^{n}w_{t}^{i}f(\xi_{t}^{i})\right) = \text{(using multinomial resampling)}$$
$$\frac{1}{T^{2}}\sum_{t=0}^{T-2}\mathbb{E}\left[\sum_{\text{bins }u}\frac{w_{t}(u)^{2}}{N_{t}(u)}\eta_{t}^{u}(\operatorname{Var}_{K}h_{t+1,T})\right] + \frac{1}{T^{2}}\sum_{t=0}^{T-2}\mathbb{E}\left[\sum_{\text{bins }u}\frac{w_{t}(u)^{2}}{N_{t}(u)}\operatorname{Var}_{\eta_{t}^{u}}(Kh_{t+1,T})\right]$$

evolution variance

resampling variance

Jensen's inequality, unbiasedness, and ergodicity show that

$$\liminf_{T \to \infty} T \times \operatorname{evolution}_{\text{variance}} \ge \frac{1}{N} \left( \int \sqrt{\operatorname{Var}_K h} \, d\mu \right)^2.$$

Using  $N_t(u) \approx \propto w_t(u) \sqrt{\eta_t^u(\text{Var}_K h)}$  and enough particles/bins, we approach the RHS in the above inequality, which is thus the smallest possible variance<sup>\*\*</sup>.

#### **Corollary:**

The weighted ensemble variance can approach  $\frac{1}{NT} \left( \int \sqrt{\operatorname{Var}_K h} \, d\mu \right)^2$ , while the direct Monte Carlo variance is  $\approx \frac{1}{NT} \int \operatorname{Var}_K h \, d\mu$ .

So, the potential gain depends on how "flat"  $Var_K h$  is.

For instance, if *K* is an independence sampler,  $Var_K h = 0$  and there is no gain. Gains occur when there is "incremental progress" towards "important regions." In applications, the variance reduction can be many orders of magnitude!

### Results on computing tails of the magnetization in the Ising model:



FIG 8. Application of WE to the Ising model at a high temperature ( $\beta = 0.25$ ).

## THANKS TO THE ORGANIZERS FOR THE INVITATION !!!