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) Introduction



Large deviation theory and
study of rare events

e |ll a) Path large deviations for kinetic theories.

F. Bouchet, J. Stat. Phys., 2020: path large deviations for the
Boltzmann equation and the irreversibility paradox.

O. Feliachi and F. Bouchet, sub. to J. Stat. Phys., 2020: path large
deviations for the plasma and the Vlasov equation.

e |ll b) Rare events for the Solar System (planet collisions).

F. Bouchet and E. Woillez, PRL, 2020. RESEARCH HIGHLIGHTS

Nature Reviews Physics | The path to the Solar system’s
16 July 2020 destabilization
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Rare events matter
1- When they have a huge impact

July 20 2003-August 20 2003
land surface temperature
minus the average for the
same period for years 2001,
2002 and 2004 (TERRA
MODIS).

-5 0 +5 41
Temperature anomaly °C

What are the probabilities (return times) and dynamics of extreme events?
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The few most extreme climate events
have more impact than all the others

Annual disaster deaths by major disaster category ——— Climate related
(CRED, UNISDR, 2018) — Geophysical

200,000

100,000

I T S e | S Y A S A (R R R
1998 2002 ¢ 2006 i 2010 % 2014
Western Europe Cyclone Nargis Russian
Heatwave In Myanmar Heatwave

We need to study extremely rare events.
This is a serious sgientific challenge.



Potential impacts of global
warming and extreme events
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Maximal wet bulb temperature (red color =31- 32°C) in 2070, with the RCP8.5 scenario.
(Kang, Elfatih and Eltahir, 2018)

Hundreds of thousands of people leave now in area of the world that will
become inhabitable before the end of the century if we do not halt global
warmings. Thinking of these phenomena in a classical economic framework
does not make any sense.



Rare events matter

2 - When they produce structural changes
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Climate abrupt transitions during the last glacial period.

(S. Rasmussen et al, 2014)

Our work on abrupt transitions to superrotating atmospheres

(C. Herbert, R. Caballero, ;md F. Bouchet, JAS, 2020)



Three key problems in the study
of climate extreme events

 The historical records are way too short to make any meaningful
predictions for the rarest events (those that matter the most).

e Climate models are wonderful tools, but they have biases. The
more precise, the more computationally costly.

e Because they are too rare, the most extreme events cannot be
computed using direct numerical simulations (the needed
computing times are often unfeasible).

The practical questions: How to sample the probability and
dynamics of rare events in complex models? How to build
effective models which are relevant for estimating the
probability of rare events?



Rare event algorithms for climate
dynamics

The practical questions: How to sample the probability and
dynamics of rare events (in complex dynamics - climate models)?

Outline :

I) Introduction

) Rare events algorithms and teleconnection patterns for
extreme heat waves

lll) The challenges to go further: estimating good score functions
for complex dynamics

IV) Committor functions for climate dynamics
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ll) Extreme heat waves -
Rare event algorithms and
teleconnection patterns



Jet stream dynamics

The Polar Jet Stream

NASA/Goddard Space Flight Center Scientific
Visualization Studio

Higher troposphere wind speed. (NASA/Goddard Space Flight Center
Scientific Visualization Studiﬂ, MERRA reanalysis dataset)




lI-1) Rare event algorithms
to study extreme heat
waves with climate models

Francesco Ragone Jeroen Wouters
RMI, Bruxelles, Belgium University of Reading, UK
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General Circulation Model

e Plasim and CESM

I5 climate models.

1° e Global. Coupled

p atmosphere/land/ocean/
vegetation.

-10

-15

Surface temperature (1, colors) and 500 hPa
geopotential height (Zg, lines) anomalies
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Long lasting summer heat waves

We will study extremes of the time averaged temperature
anomalies:

1 (P ] ﬁ
a=—/| dt dr T (r,1)
D J, || )y | Ve

e Duration D = one week, a few weeks, a month, or a season.

e Area &/ = Scandinavia, Europe, France, Alberta, Russia, ...

* Climate models (CESM or PLASIM) or reanalysis datasets.
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The Giardina— Kurchan (Del-Moral
— Garnier) rare event algorithm

1
, With A[X](?) = EJ dr T(r, ), we sample the tilted path-distribution
o

~ 1 d
B, ({X(t)}ogg> = oo ({X(t)}ogg> exp kL A[X1(0) dt| -

We simulate an ensemble of N trajectories x, (). At each time step ¢, = iz, each
trajectory can be killed or cloned according to the weights

t N t
W,-l(k) exp (k‘; Alx,](2) dt) with Wi(k) = Z exp (kL Alx,](2) dt) :

i—1 n=1 i—1

e Algorithm: Giardina et al. 2006. Mathematical aspects: Del Moral's book (2004).

15



Genealogical algorithm: selecting,
Killing and cloning trajectories

2 :
(a) u\
_ O L The trajectory statistics
1 *"'&‘,«M‘W is tilted towards the

events of interest.

29.0 292 294 206 298  30.0

(from Bouchet, Jack, Lecomte, Nemoto, 2016)
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Return time plot computed using
a rare event algorithm (PLASIM)

|
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o

PLASIM model.
No seasonal cycle.
Del-Moral—Garnier (or Giardina—
With a rare event| Kurchan) algorithm.

algorithm

N}
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—
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T

F. Ragone, J. Wouters,
and F. Bouchet, PNAS, 2018

o
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Extremes of 90-day Europe heat waves
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At a fixed numerical cost, we can study events which are several orders of

magnitude rarer with the rare event algorithm than with the control run.
17



Oversampling of extreme event
using a rare event algorithm (CESM)

1034
| Heat waves with a
| 25-year return time
AN CESM model

With seasonal cycle.
Del-Moral—Garnier (or Giardina—
Kurchan) algorithm.
Heat waves with a F. Ragone, and F. Bouchet, 2021,
1000-year return time submitted to GRL, arXiv:2009.02519.

Number of heat waves
S\ 3

1Q° v r - ' r
50 100 150 200 250 300

N"j algorithm k  With the rare event algorithm
Number of observed heat waves for 1,000 of simulations

We get several hundreds more heat waves with a return times of 1000 years than

with the direct numerical simulation.
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[I-2) Heat wave dynamics
and global teleconnection
patterns for extremes

r A g
d

Dario Lucente George Miloshevich Francesco Ragone
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Heat wave dynamics

15

10

-10

-15

Plasim heat wave over Scandinavia
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Heat wave = unusual quasi stationary
pattern + progressive Rossby wave

Hayashi spatio-temporal spectrum for eastward waves - CESM model
(from the 500 hPa geopotential height over a latitudinal band 55° — 75°N)

Wave number
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CESM Climatology CESM D = 30-day extreme heatwaves
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Extreme teleconnection pattern

-3 -2 -1 0 1 2

Extreme teleconnection patterns
= conditional averages with

1 (P 1
— | df——| dr Tg(r,0) > 2K
DJ, ||y

and D = 40 days.

Plasim model.
Summer Scandinavian heat
waves.
F. Ragone, J. Wouters,
and F. Bouchet, PNAS, 2018

500 hPa geopotential height and temperature anomalies
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Extreme teleconnection pattern

-3 -2 -1 0 1 2

Extreme teleconnection patterns
= conditional averages with

1 (P 1
— | df——| dr Tg(r,0) > 2K
DJ, ||y

and D = 40 days.

Plasim model.
Summer Scandinavian heat
waves.
F. Ragone, J. Wouters,
and F. Bouchet, PNAS, 2018

500 hPa geopotential height and temperature anomalies
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Extreme teleconnection pattern

-3 -2 -1 0 1 2

Extreme teleconnection patterns
= conditional averages with

1 (P 1
— | df——| dr T4(r,0) > 2K
DJ, |41,

and D = 40 days.

Plasim model.
Summer Scandinavian heat
waves.
F. Ragone, J. Wouters,
and F. Bouchet, PNAS, 2018

500 hPa geopotential height and temperature anomalies
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Extreme teleconnection pattern

Extreme teleconnection patterns
= conditional averages with

1 (P 1
— | df——| dr Tg(r,0) > 2K
DJ, ||y

and D = 40 days.

Plasim model.
Summer Scandinavian heat
waves.
F. Ragone, J. Wouters,
and F. Bouchet, PNAS, 2018

500 hPa geopotential height and temperature anomalies

Extreme teleconnection patterns differ from teleconnections for typical fluctuations and
are not characterized by a single wavenumber but are much constrained by geography.



2018 heat wave over Scandinavia

Era 5 reanalysis dataset

150 100 50 0 50 100 150
Temperature anomalies and 500 hPa geopotential height in July 2018
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2018 heat wave over Scandinavia

Published in January 2018

2150 100 50 0 50 100

Observed in July 2018

Is this just by chance?

How good are the models for
predicting those patterns?
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2018 heat wave over Scandinavia

Published in January 2018

2150 100 50 0 50 100

Observed in July 2018

Is this just by chance?

How good are the models for
predicting those patterns?

CESM patterns (2020) are similar
to Plasim ones (2018).
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Teleconnection patterns for moderate
heat waves over France - ERAS

v

20° N

10

17 ERADS reanalysis
% =N\ cwf  4-year return time.
D = 14.
At day 7 = 0.

Dashed = not statistically
significant for a t>2 student
test.

Temperature anomalies and 500 hPa
geopotential height conditioned on

20° N moderate heat waves

40° W

It is extremely difficult to have statistically significant patterns from reanalysis

datasets. 29



Teleconnection patterns for
moderate heat waves over France

ERADS reanalysis CESM model

20° N ) A ] 20°N
7 / -~ ," S
’ i . b "t

75K

3.5K

~0.5K

-4.5 K

20°N 20° N

40°W 20° W i 0° " 20;’ Ev 40° E 40°'W 20° W (;° 26°é 40° E
Temperature anomalies and 500 hPa geopotential height conditioned on extreme
heat waves with a 4-year return time, with D = 14, atday z = 0

-8.5 K

For moderately extreme heat waves, CESM and ERA5 reanalysis dataset are
qualitatively consistent.
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2018 heat wave over Scandinavia

Published in January 2018

Observed in July 2018

Conclusions:

Climate models predict well
moderately extreme teleconnection
patterns.

This is a hint that they might predict
correctly more extreme
teleconnection patterns and that
what we observed is not a
coincidence.
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lll) The challenges to go further:
estimating good score functions
for complex dynamics
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The Adaptive Multilevel Splitting
(AMS) rare event algorithm

Strategy: selection, pruning and

cloning. Probability estimate:

0 p=(1-1UNK
\ where N is the clone number
and K is the iteration number.

1 branched on 2

\

QQy Q5 +—0 (Q is the score (sélection) function

Cérou, Guyader (2007). Cérou, Guyader, Lelievre, and Pommier (2011).
PDEs: Rolland, Bouchet et Simonnet (2016) - TAMS: Lestang et al (2018)
Atmosphere turbulent jets: Rolland, Bouchet et Simonnet (2019 and 2021).
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The score function is the
Key practical problem

e With a good score function, rare event algorithms give
excellent results.

e With a poor score function, rare event algorithms are
useless.

* How to build good score functions?



Committor functions are optimal score
functions for rare event algorithms

B The Adaptive
Multilevel Splitting

A ‘ algorithm
“\‘ N = 3 trajectories
1 branched on 2 Y A .
019, Qs
0, < Qs < Qs — @ is the score (sélection) function

The efficiency of the algorithm depends on the choice of the
score function.
The optimal score function is the committor function.



Committor function

1 X(0) } _o<i<+00 18 @ Markov process. A, B are subsets of the phase
space.

For a given sample path {X(?)}_ <<t the first hitting time 7, is
7, = 1Inf{r|X(#) € A}.

The committor function g(x) of the sets A and B is defined as the

probability that a trajectory starting at the point x reaches the set B
before the set A

gx) =P, (TB < TA) :

How to estimate the committor function? With a rare event algorithm!



Coupling rare event algorithms with data
based learning of committor functions

i -
. — Data
sampling

/ Machine Learning
Optimal score

\ function
Rare Event Algorithm

(Committor function)

One example: Bouchet, Jack, Lecomte, Nemoto, PRE, 2016

(For X in dimension 1)



Coupling rare event algorithms with data
based learning of committor functions

. — Data
sampling

Work In progress for climate models!

/ Machine Learning
Optimal score

\ function
Rare Event Algorithm

(Committor function)




IV-1) Committor functions
for climate dynamics



IV-2) Predictions at the
predictability margin and
committor functions for a model
of ENSO (El Nino)

With Dario Lucente, Stefan Duffner, Corentin Herbert and Joran Rolland

Dario Lucente
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Picture R. Houser
Washington university

Satellite observation of sea surface temperature and cloud cover during El Nino
1997-1998 event, the most intense one during the last century



Ensemble Oceanic Nino Index (ENS-ONI) 1865-March 2017
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Some prediction problems:

e Will we have EIl Nino next year?
e When will be the next strong El Ninho?

The predictability time is of the order of the Lyapunov time.



The predictability margin of chaotic
dynamical systems or stochastic
processes

The predictability
margin

Weather

| Seasonal forecast |
forecast , _

Invariant
measure

Initial value
problem

N

Lyapunov time ?



What should be predicted
at the predictability margin ?

 Does the question: « Will we have El Nino next year?»
make sense? (in the predictability margin range)

e |s it a deterministic forecast problem?



What should be predicted
In the predictability margin ?

lon: « Will we e El Nino next year?»
ability margin range)

e Does the g
make sense? (in

m??

e |s it adet Istic forecast p
e Of course not.

* |t is a probabillistic forecast problem.

* The question is « \What is the probabillity to have El Nino
next year? »



Seasonal Forecast is
probabillistic

ECMWF Seasonal Forecast System 5
Prob(2m temperature > median) NDJ 2019/20
Forecast stan is 01/09/19, climate perod is 1993-2016 Solid contour at 1% significance level

Ensemble size = 51, climate size = 600

BNo.10%c [10.20% [20.30% [ ]30.40% [ J40.60% [ ]60.70% [I70.80% [Je0.90% [J§%0..100%

180°E 150°W 120°W 90°W 60° W 30°W 0°E 30°E 60°E 90°E 120°E 150°E

ECMWEF seasonal forecast on 01/09/2019 of the 2 meter temperature in November
2019 - Probability of exceeding the median - (from ECMWF SEASS5 website)



Seasonal Forecast is
probabillistic

ECMWF Seasonal Forecast System 5
Prob(most likely category of 2m temperature) NDJ 2019/20

Forecast starnt is 01/09/19, climate perod is 1993-2016
Ensemble size = 51, climate size = 600

<-— Prob(below lower tercile) Prob(above upper tercile) —>
Bl 70..100% Jl60.70% [50.60% [ 140.50% [ _|other []40.50% [50.60% [l60.70% [R70..100%
180°E 150°W 120°W 90°W 60°W 30°W 0°E 30°E 60°E 90°E 120°E 150°E

ECMWEF seasonal forecast on 01/09/2019 of the 2 meter temperature in November
2019 - Tercile summary - (from ECMWF SEASS5 website)



What is the mathematical concept
of the predictability margin?

The predictability
margin

Weather
forecast

Seasonal forecast{  Climate

Time

Initial value | ' Invariant
problem t  measure

|
y) \
Which probabilistic object?

Lyapunov time ?



Committor function

1X(?) } _so<i<+00 1S @ Markov process. A, B are subsets of the phase space.

For a given sample path {X(f)}_, <<+ » the first hitting time 7, is
7, = Inf{?| X(r) € A} .

The committor function g(x) of the sets A and B is defined as the probability that a
trajectory starting at the point x at the time O reaches the set B before the set A

qgix) =P, (TB < TA) :
We will also consider

g,y =P, (X() € A) =E, (1X@E A),

which is also a committor function for an auxiliary process.



The Jin and Timmermann model

In order to explain El Nino, Jin and Timmermann
introduced a simple model which accounts for the
recharge-discharge mechanism which is at the basis of

ENSO.

The relevant variables are:
. The western SST of the Pacific Ocean T,
. The eastern SST of the Pacific Ocean T,

. The thermocline depth anomaly of the western Pacific hy that links
them.



The Jin and Timmermann model

e With dimensionless units, the equations are

X = po (x2 — ax) + X [x + y + ¢ — c tanh(x + z)] — D (x,y, 2)¢;
y = —pb (x*+ay) + D(x,y,2)¢,

=5k :
L = < 5

e This is chaotic deterministic dynamics perturbed by a small
noise.



The chaotic attractor and the periodic
orbit of the Jin and Timmermann model

.— Set B: limit cycle

Committor:
Q(xaya Z) = Px (TB < TA) .



A cut of the committor
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A cut of the committor
function. High noise case
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A cut of the committor

function
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A cut of the committor function.
Intermediate noise case

3. Deterministic like
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to initial condition
Hard potential
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Another cut of the

committor function
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Conclusions: Predictions at the
Predictability Margin and Committor
Functions

At the predictability margin, predictions should be probabilistic. The
committor functions are the proper mathematical objects.

For a simple dynamics of El Nifo, which is a small stochastic
perturbation of a chaotic deterministic system, we have computed a
committor function for a transition to occuir.

The committor functions shows areas of the phase space with hard,
respectively easy, probabilistic predictability potential and quantifies
the probability of the event.

This informs us on what to expect for a predictability problem at the
predictability margin, in a perfect information context.

D. Lucente, S. Duffner, C. Herbert, J. Rolland, and F. Bouchet, proceeding of Climate
Informatics 2019.

D. Lucente, C. Herbert, and F. Bouchet, to be submitted to Climate Dynamics.



IV-2) Predicting heat waves
(committor functions) with
deep neural networks

With P. Abry, P. Borgnat, V. Jacques-Dumas and F. Ragone

Valerian Jacques-Dumas
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Predicting heat waves with a
deep nheural network 1) Data

Surface temperature (1, colors) and 500 hPa geopotential height (Z,, lines) anomalies

e Plasim and CESM climate models.

* \We use summer (JJA) data: 8 maps/day, 90 days/year, 1000 year = 720 000
maps.

e For Plasim data, each field has a resolution 64 X 128, restricted to 25 X 128

above 30° North.
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Heat wave definition

X(1) = T, field at time ¢, or X(¢) = (T, Zg) fields at time 7.

Y(?): time and space averaged surface temperature anomaly within 7 days:

1 t+t+D 1
Y1) = —J —[ T.(r,u) dr du,
D 7 | A | A

and Z(t) =1 1f Y(r) > a, and Z(t) = 0 otherwise
Z(t) € {0,1}. A heat wave occursif Z = 1.

We have a classification problem for the data (X, Z). We want to learn the
probability g(x) that Z = 1 given that X = x (committor function).

5% most extreme events: a = a5 = 3.08 K. 2.5% most extreme events:
a=a,s=3.7 K.1.25% most extreme events: ¢ = a, ,s = 4.23 K.
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Predicting heat waves with a
deep neural network

Observing the temperature and geopotential height at 500 hPa today, what is
the probability to observe a D-day heat wave starting v days from now?

64x64x2 1600
~ O3XOIX32 4oyaox32
13x64  5x5x64 .64
E '[[:..
\ convox9 64:0nv9x9, 64 dense
- ' pystride (1, 1)
conv12x12, 32ma.’(‘f°°2'2>2<25t"de (1,1) e
conv12x12, 32 stride (1, 1) stride (2, 2) atten dense

stride (1, 1)

Figure 2: Architecture of the CNN used to forecast extreme heatwaves.
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Machine learning for
extreme heat waves

Supervised learning from 1,000 years of climate model
data (720 000 couples (X, Z)).

We use undersampling to deal with class imbalance.

We use transfer learning between return levels a, first
training a deep neural network for less rare events, and
then transferring to learn rarer events with less data.
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Predicting heat waves

—$— 5% most extreme events
0 45 | —— 2.5% most extreme events
- —4— 1.25% most extreme events

0.30

0.15

Matthew correlation coefficient

0.00

Temporal shift 7 (in days)

0 3 6 9 12 15

Heat waves over France
D =14

Predictability, 7 day ahead, for a 14-day heatwave from the temperature and GPH fields

We have very interesting prediction capabilities up to 15 days ahead of time for

D = 14-day heatwaves

V. Jacques-Dumas, F. Ragone, F. Bouchet, P. Borgnat and P. Abry, 2021, sub. to IEEE TPAMI + ArXiv
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Conclusions

* We can use rare event algorithms to gather an amazing statistics for extreme heat
waves with Plasim (PNAS, 2018), and CESM (GRL and ArXiv, 2021).

 The dynamical mechanism is the birth of quasi-stationary non zonal global patterns,
which are much affected by topography and oceans (PNAS, 2018, GRL 2021).

e Models reproduce correctly those extreme teleconnection patterns for moderate
extremes, compared with the ERAS reanalysis dataset. We need model and rare
event algorithms to study more extreme heat waves teleconnection patterns.

e Studying the committor function for EI-Nino transitions, we introduced the notions of
hard, versus easy probabilistic predictability potential. (Climate informatics 2019,
Sub. To Climate dynamics 2021).

e Machine learning has the potential to give meaningful statistical predictions for
long-lasting heat wave up to 2 weeks ahead of time (Sub. to IEEE TPAMI, 2021).

Please join us to study climate extreme events
The scientific questions are fascinating!

65



