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I) Introduction
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Large deviation theory and 
study of rare events

• III a) Path large deviations for kinetic theories.


F. Bouchet, J. Stat. Phys., 2020: path large deviations for the 
Boltzmann equation and the irreversibility paradox.


O. Feliachi and F. Bouchet, sub. to J. Stat. Phys., 2020: path large 
deviations for the plasma and the Vlasov equation.


• III b) Rare events for the Solar System (planet collisions). 

F. Bouchet and E. Woillez, PRL, 2020.
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Rare events matter  
1- When they have a huge impact

July 20 2003-August 20 2003 
land surface temperature 
minus the average for the 
same period for years 2001, 
2 0 0 2 a n d 2 0 0 4 ( T E R R A 
MODIS).

2003 heat wave over western 
Europe - 70 000 deaths.
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What are the probabilities (return times) and dynamics of extreme events?



The few most extreme climate events 
have more impact than all the others

(C. D. Ahrens)

We need to study extremely rare events.  
This is a serious scientific challenge.

Western Europe 
Heatwave

Russian  
Heatwave

Cyclone Nargis 
In Myanmar

Annual disaster deaths by major disaster category 
(CRED, UNISDR, 2018) 

Climate related 
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 Potential impacts of global 
warming and extreme events

Maximal wet bulb temperature (red color =31-32°C), in 2070, with the RCP8.5 scenario. 

(Kang, Elfatih and Eltahir, 2018)

Hundreds of thousands of people leave now in area of the world that will 
become inhabitable before the end of the century if we do not halt global 
warmings. Thinking of these phenomena in a classical economic framework 
does not make any sense.



Rare events matter  
2 - When they produce structural changes

Climate abrupt transitions during the last glacial period.  
(S. Rasmussen et al, 2014)

Greenland ice cores
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Our work on abrupt transitions to superrotating atmospheres   
(C. Herbert, R. Caballero, and F. Bouchet, JAS, 2020)



Three key problems in the study 
of climate extreme events

• The historical records are way too short to make any meaningful 
predictions for the rarest events (those that matter the most).


• Climate models are wonderful tools, but they have biases. The 
more precise, the more computationally costly. 


• Because they are too rare, the most extreme events cannot be 
computed using direct numerical simulations (the needed 
computing times are often unfeasible).


The practical questions: How to sample the probability and 
dynamics of rare events in complex models? How to build 
effective models which are relevant for estimating the 
probability of rare events?
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Rare event algorithms for climate 
dynamics

The practical questions: How to sample the probability and 
dynamics of rare events (in complex dynamics - climate models)?  

Outline : 

I) Introduction 

II) Rare events algorithms and teleconnection patterns for 
extreme heat waves 

III) The challenges to go further: estimating good score functions 
for complex dynamics 

IV) Committor functions for climate dynamics
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II) Extreme heat waves - 
Rare event algorithms and 

teleconnection patterns
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Jet stream dynamics

Higher troposphere wind speed. (NASA/Goddard Space Flight Center 
Scientific Visualization Studio, MERRA reanalysis dataset)
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II-1) Rare event algorithms 
to study extreme heat 

waves with climate models

Francesco Ragone 
RMI, Bruxelles, Belgium

Jeroen Wouters 
University of Reading, UK
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General Circulation Model 
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• P l a s i m a n d C E S M 
climate models.


• G l o b a l . C o u p l e d 
atmosphere/land/ocean/
vegetation.

Surface temperature ( colors) and 500 hPa 
geopotential height ( lines) anomalies

Ts,
Zg,



Long lasting summer heat waves 

We will study extremes of the time averaged temperature 
anomalies: 

                     

• Duration one week, a few weeks, a month, or a season.


• Area Scandinavia, Europe, France, Alberta, Russia, …


• Climate models (CESM or PLASIM) or reanalysis datasets.

a =
1
D ∫

D

0
dt

1
|𝒜 | ∫𝒜

dr Ts(r, t)

D =

𝒜 =
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The Giardina—Kurchan (Del-Moral
—Garnier) rare event algorithm

• With , we sample the tilted path-distribution





• We simulate an ensemble of  trajectories . At each time step , each 
trajectory can be killed or cloned according to the weights


 


• Algorithm: Giardina et al. 2006. Mathematical aspects: Del Moral's book (2004).

A[X](t) =
1

|𝒜 | ∫𝒜
dr TS(r, t)

P̃k ({X(t)}0≤t≤T) =
1

exp(Tλ(k))
P0 ({X(t)}0≤t≤T) exp [k∫

T

0
A[X](t) dt] .

N xn(t) ti = iτ

1
Wi(k)

exp (k∫
ti

ti−1

A[xn](t) dt) with Wi(k) =
N

∑
n=1

exp (k∫
ti

ti−1

A[xn](t) dt) .
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Genealogical algorithm: selecting, 
killing and cloning trajectories

(from Bouchet, Jack, Lecomte, Nemoto, 2016)
16

29.0 29.2 29.4 29.6 29.8 30.0
t

�2

�1

0

1

2

x(
t)

(a)

29.0 29.2 29.4 29.6 29.8 30.0
t

�2

�1

0

1

2

x(
t)

(b)
The trajectory statistics 
is tilted towards the 
events of interest.

Sample paths of the Giardina Kurchan algorithm



Return time plot computed using 
a rare event algorithm (PLASIM)

At a fixed numerical cost, we can study events which are several orders of 
magnitude rarer with the rare event algorithm than with the control run. 
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F. Ragone, J. Wouters,  
and F. Bouchet, PNAS, 2018 

PLASIM model.

No seasonal cycle. 
Del-Moral—Garnier (or Giardina—
Kurchan) algorithm. 
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GCM - No algorithm

With a rare event 
algorithm



Oversampling of extreme event 
using a rare event algorithm (CESM)

We get several hundreds more heat waves with a return times of 1000 years than 
with the direct numerical simulation. 

F. Ragone, and F. Bouchet, 2021, 
submitted to GRL, arXiv:2009.02519. 

CESM model 

With seasonal cycle. 
Del-Moral—Garnier (or Giardina—
Kurchan) algorithm. 
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II-2) Heat wave dynamics 
and global teleconnection 

patterns for extremes

Francesco RagoneGeorge MiloshevichDario Lucente
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Heat wave dynamics 

Plasim heat wave over Scandinavia
20



Heat wave = unusual quasi stationary 
pattern + progressive Rossby wave
Hayashi spatio-temporal spectrum for eastward waves - CESM model 

(from the 500 hPa geopotential height over a latitudinal band )55o − 75oN
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Extreme teleconnection pattern

500 hPa geopotential height and temperature anomalies

Extreme teleconnection patterns 
= conditional averages with





and 40 days.


Plasim model.  
Summer Scandinav ian heat 
waves.

1
D ∫

D

0
dt

1
|𝒜 | ∫𝒜

dr TS(r, t) > 2 K

D =

F. Ragone, J. Wouters,  
and F. Bouchet, PNAS, 2018 
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Extreme teleconnection pattern

500 hPa geopotential height and temperature anomalies

Extreme teleconnection patterns 
= conditional averages with





and 40 days.


Plasim model.  
Summer Scandinav ian heat 
waves.

1
D ∫

D

0
dt

1
|𝒜 | ∫𝒜

dr TS(r, t) > 2 K

D =

F. Ragone, J. Wouters,  
and F. Bouchet, PNAS, 2018 
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Extreme teleconnection pattern

500 hPa geopotential height and temperature anomalies

Extreme teleconnection patterns 
= conditional averages with





and 40 days.


Plasim model.  
Summer Scandinav ian heat 
waves.

1
D ∫

D

0
dt

1
|𝒜 | ∫𝒜

dr TS(r, t) > 2 K

D =

F. Ragone, J. Wouters,  
and F. Bouchet, PNAS, 2018 
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Extreme teleconnection pattern

500 hPa geopotential height and temperature anomalies

Extreme teleconnection patterns 
= conditional averages with





and 40 days.


Plasim model.  
Summer Scandinav ian heat 
waves.

1
D ∫

D

0
dt

1
|𝒜 | ∫𝒜

dr TS(r, t) > 2 K

D =

Extreme teleconnection patterns differ from teleconnections for typical fluctuations and 
are not characterized by a single wavenumber but are much constrained by geography.

F. Ragone, J. Wouters,  
and F. Bouchet, PNAS, 2018 

25



2018 heat wave over Scandinavia

Temperature anomalies and 500 hPa geopotential height in July 2018 
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Era 5 reanalysis dataset



2018 heat wave over Scandinavia

Is this just by chance?  

How good are the models for 
predicting those patterns?

Observed in July 2018

Published in January 2018
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2018 heat wave over Scandinavia

Is this just by chance?  

How good are the models for 
predicting those patterns? 

CESM patterns (2020) are similar 
to Plasim ones (2018).

Observed in July 2018

Published in January 2018
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Teleconnection patterns for moderate 
heat waves over France - ERA5 

Temperature anomalies and 500 hPa 
geopotential height conditioned on 

moderate heat waves

ERA5 reanalysis

4-year return time. 

.


At day .
D = 14

τ = 0

Dashed = not statistically  
significant  for a t>2 student 
test. 

It is extremely difficult to have statistically significant patterns from reanalysis 
datasets. 29



Teleconnection patterns for 
moderate heat waves over France

For moderately extreme heat waves, CESM and ERA5 reanalysis dataset are 
qualitatively consistent.

Temperature anomalies and 500 hPa geopotential height conditioned on extreme 
heat waves with a 4-year return time, with , at day D = 14 τ = 0

CESM modelERA5 reanalysis

30



2018 heat wave over Scandinavia

Conclusions: 
  
Cl imate models predict wel l 
moderately extreme teleconnection 
patterns. 

This is a hint that they might predict 
c o r r e c t l y m o r e e x t r e m e 
teleconnection patterns and that 
what we observed is not a 
coincidence.  

Observed in July 2018

Published in January 2018
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III) The challenges to go further: 
estimating good score functions 

for complex dynamics 
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The Adaptive Multilevel Splitting 
(AMS) rare event algorithm

1

1 branched on 2

3
2

x

Q1Q2 Q3

Q1 < Q2 < Q3

A

B

N = 3 trajectories

Probability estimate: 
              

where  is the clone number 
and  is the iteration number.

̂p = (1 − 1/N)K,
N

K

Cérou, Guyader (2007). Cérou, Guyader, Lelièvre, and Pommier (2011). 
PDEs: Rolland, Bouchet et Simonnet (2016) - TAMS: Lestang et al (2018) 
Atmosphere turbulent jets: Rolland, Bouchet et Simonnet (2019 and 2021).

Strategy: selection, pruning  and 
cloning.
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 is the score (sélection) function 𝒬



The score function is the 
key practical problem  

• With a good score function, rare event algorithms give 
excellent results.


• With a poor score function, rare event algorithms are 
useless. 


• How to build good score functions?



Committor functions are optimal score 
functions for rare event algorithms

1

1 branched on 2

3
2

x

Q1Q2 Q3

Q1 < Q2 < Q3

A

B

N = 3 trajectories

The Adaptive 
Multilevel Splitting 

algorithm

 is the score (sélection) function 𝒬
The efficiency of the algorithm depends on the choice of the 

score function.

The optimal score function is the committor function. 



Committor function
•  is a Markov process. , B are subsets of the phase 

space.


• For a given sample path , the first hitting time  is 



• The committor function q(x) of the sets  and  is defined as the 
probability that a trajectory starting at the point x reaches the set B 
before the set A  

   

• How to estimate the committor function? With a rare event algorithm!

{X(t)}−∞≤t<+∞ A

{X(t)}−∞≤t<+∞ τA
τA = inf{t |X(t) ∈ A} .

A B

q(x) = ℙx (τB < τA) .



Coupling rare event algorithms with data 
based learning of committor functions

Machine Learning

Rare Event Algorithm 

Optimal score 
functionDataDirect 

sampling

One example: Bouchet, Jack, Lecomte, Nemoto, PRE, 2016

(Committor function)

(For  in dimension 1)X



Coupling rare event algorithms with data 
based learning of committor functions

Machine Learning

Rare Event Algorithm 

Optimal score 
functionDataDirect 

sampling

(Committor function)

Work in progress for climate models!



IV-1) Committor functions 
for climate dynamics
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IV-2) Predictions at the 
predictability margin and 

committor functions for a model 
of ENSO (El Niño)

With Dario Lucente, Stefan Duffner, Corentin Herbert and Joran Rolland

40

Dario Lucente



El Niño

Satellite observation of sea surface temperature and cloud cover during El Niño 
1997-1998 event, the most intense one during the last century

Picture R. Houser  
Washington university



El Niño

• Will we have El Niño next year? 
• When will be the next strong El Niño?

Some prediction problems:

The predictability time is of the order of the Lyapunov time. 



The predictability margin of chaotic 
dynamical systems or stochastic 

processes

Time
Weather  
forecast Climate

Initial value 
problem

1
λ

Lyapunov time ?

Invariant 
 measure

The predictability 
margin

Seasonal forecast

?



What should be predicted   
at the predictability margin ?

• Does the question: « Will we have El Niño next year?» 
make sense? (in the predictability margin range)


• Is it a deterministic forecast problem?



What should be predicted   
in the predictability margin ?
• Does the question: « Will we have El Niño next year?» 

make sense? (in the predictability margin range)


• Is it a deterministic forecast problem?


• Of course not.


• It is a probabilistic forecast problem.


• The question is « What is the probability to have El Niño 
next year? » 



Seasonal Forecast is 
probabilistic

ECMWF seasonal forecast on 01/09/2019 of the 2 meter temperature in November 
2019 - Probability of exceeding the median - (from ECMWF SEAS5 website)



Seasonal Forecast is 
probabilistic

ECMWF seasonal forecast on 01/09/2019 of the 2 meter temperature in November 
2019 - Tercile summary - (from ECMWF SEAS5 website)



What is the mathematical concept 
of the predictability margin?

Time
Weather  
forecast Climate

Initial value 
problem

1
λ

Lyapunov time ?

Invariant 
 measure

The predictability 
margin

Seasonal forecast

?

Which probabilistic object?



Committor function
•  is a Markov process. , B are subsets of the phase space.


• For a given sample path , the first hitt ing t ime is 



• The committor function q(x) of the sets  and  is defined as the probability that a 
trajectory starting at the point x at the time 0 reaches the set B before the set A  

   

• We will also consider


 

  which is also a committor function for an auxiliary process.

{X(t)}−∞≤t<+∞ A

{X(t)}−∞≤t<+∞ τA
τA = inf{t |X(t) ∈ A} .

A B

q(x) = ℙx (τB < τA) .

q(x, t) = ℙx (X(t) ∈ A) = 𝔼x (1X(t)∈A),



The Jin and Timmermann model
• In order to explain El Nino, Jin and Timmermann 

introduced a simple model which accounts for the 
recharge-discharge mechanism which is at the basis of 
ENSO.


• The relevant variables are:


1. The western SST of the Pacific Ocean T1, 

2. The eastern SST of the Pacific Ocean T2, 

3. The thermocline depth anomaly of the western Pacific h1 that links 
them.




The Jin and Timmermann model

• With dimensionless units, the equations are 


 


• This is chaotic deterministic dynamics perturbed by a small 
noise.


·x = ρδ (x2 − ax) + x [x + y + c − c tanh(x + z)] − Dx(x, y, z)ξt
·y = − ρδ (x2 + ay) + Dy(x, y, z)ξt

·z = δ (k − z −
x
2 )



The chaotic attractor and the periodic 
orbit of the Jin and Timmermann model

Set : limit cycleB

Set : chaotic attractor.A

Committor: 
  q(x, y, z) ≃ ℙx (τB < τA) .



A cut of the committor 
function. Deterministic case

x = − 2.831
σ = 0.

Deterministic committor  basins of attraction ≃

Noise strength



A cut of the committor 
function. High noise case

x = − 2.831
σ = 10−3 .



A cut of the committor 
function

σ = 5.10−5 .σ = 0.
Deterministic and intermediate noise cases.



A cut of the committor function. 
Intermediate noise case

1. Perfect predictability

2. Perfect predictability

3. Deterministic like  
sensitivity 

to initial condition 
Hard potential 
predictability 

4. Smooth probability 
Easy potential 

predictability of the 
probability



Another cut of the 
committor function

σ = 5.10−5 σ = 10−3

Intermediate and high noise cases.

x x

zz

q q

y = − 1.158



Conclusions: Predictions at the 
Predictability Margin and Committor 

Functions
• At the predictability margin, predictions should be probabilistic. The 

committor functions are the proper mathematical objects. 

• For a simple dynamics of El Niño, which is a small stochastic 
perturbation of a chaotic deterministic system, we have computed a 
committor function for a transition to occur.


• The committor functions shows areas of the phase space with hard, 
respectively easy, probabilistic predictability potential and quantifies 
the probability of the event.


• This informs us on what to expect for a predictability problem at the 
predictability margin, in a perfect information context.

D. Lucente, S. Duffner, C. Herbert, J. Rolland, and F. Bouchet, proceeding of Climate 
Informatics 2019. 

D. Lucente, C. Herbert, and F. Bouchet, to be submitted to Climate Dynamics.



IV-2) Predicting heat waves 
(committor functions) with 

deep neural networks
With P. Abry, P. Borgnat, V. Jacques-Dumas and F. Ragone

59

Valerian Jacques-Dumas



Predicting heat waves with a 
deep neural network - 1) Data

60

• Plasim and CESM climate models.


• We use summer (JJA) data: 8 maps/day, 90 days/year, 1000 year = 720 000 
maps.


• For Plasim data, each field has a resolution , restricted to  
above  North. 

64 × 128 25 × 128
30o

Surface temperature ( colors) and 500 hPa geopotential height ( lines) anomaliesTs, Zg,



Heat wave definition
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•  field at time , or  fields at time .


• : time and space averaged surface temperature anomaly within  days: 




• . A heat wave occurs if .


• We have a classification problem for the data . We want to learn the 
probability  that  given that  (committor function).


• 5% most extreme events: . 2.5% most extreme events: 
. 1.25% most extreme events: . 

X(t) = Ts t X(t) = (Ts, Zg) t

Y(t) τ

Y(t) =
1
D ∫

t+τ+D

t+τ

1
|𝒜 | ∫𝒜

Ts( ⃗r, u) d ⃗r du,

and Z(t) = 1 if Y(t) > a, and Z(t) = 0 otherwise

Z(t) ∈ {0,1} Z = 1

(X, Z)
q(x) Z = 1 X = x

a = a5 = 3.08 K
a = a2.5 = 3.7 K a = a1.25 = 4.23 K



Predicting heat waves with a 
deep neural network 

Observing the temperature and geopotential height at 500 hPa today, what is 
the probability to observe a -day heat wave starting  days from now?D τ
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Machine learning for 
extreme heat waves

• Supervised learning from 1,000 years of climate model 
data (720 000 couples ).


• We use undersampling to deal with class imbalance.


• We use transfer learning between return levels , first 
training a deep neural network for less rare events, and 
then transferring to learn rarer events with less data.

(X, Z)

a
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Predicting heat waves

Predictability,  day ahead, for a 14-day heatwave from the temperature and GPH fieldsτ

V. Jacques-Dumas, F. Ragone, F. Bouchet, P. Borgnat and P. Abry, 2021, sub. to IEEE TPAMI + ArXiv

Heat waves over France 
D = 14

We have very interesting prediction capabilities up to 15 days ahead of time for 
-day heatwaves  D = 14
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Conclusions
• We can use rare event algorithms to gather an amazing statistics for extreme heat 

waves with Plasim (PNAS, 2018), and CESM (GRL and ArXiv, 2021). 


• The dynamical mechanism is the birth of quasi-stationary non zonal global patterns, 
which are much affected by topography and oceans (PNAS, 2018, GRL 2021).


• Models reproduce correctly those extreme teleconnection patterns for moderate 
extremes, compared with the ERA5 reanalysis dataset. We need model and rare 
event algorithms to study more extreme heat waves teleconnection patterns. 

• Studying the committor function for El-Nino transitions, we introduced the notions of 
hard, versus easy probabilistic predictability potential. (Climate informatics 2019, 
Sub. To Climate dynamics 2021). 

• Machine learning has the potential to give meaningful statistical predictions for 
long-lasting heat wave up to 2 weeks ahead of time (Sub. to IEEE TPAMI, 2021).

Please join us to study climate extreme events  
The scientific questions are fascinating!
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