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RARE EVENT PROBABILITIES AND MCMC

Compute probability µε(A) with respect to a Gibbs measure of the
form

µε(dx) = e−V(x)/εdx
/

Z(ε),

where V : Rd → R is the potential of a complex physical system, ε is
the temperature of the system, and A does not contain the global
minimum of V.

Well-known: µε(dx) is the unique invariant distribution of the
diffusion process {X(t)}t satisfying

dX (t) = −∇V (X (t)) dt +
√

2εdW (t) .

Markov Chain Monte Carlo (MCMC)
The empirical measure over a large time T:

λT(dx) =
1
T

∫ T

0
δX(t)(dx)dt ∈ P(Rd).

Use λT(A) for some large T as an estimate of µε(A).
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EXPONENTIAL EXIT TIME

In general V contains many deep and shallow local minima.

Exponential exit time: Mean transition time from one local minimum
to another is roughly exp(h/ε) when the temperature ε is small, where
h is the barrier height.
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PARALLEL TEMPERING (TWO TEMPERATURES)

Besides ε1 = ε, introduce higher temperature ε2 = ε/α with α ∈ (0, 1).

dX1 = −∇V(X1)dt +
√

2ε1dW1

dX2 = −∇V(X2)dt +
√

2ε2dW2,

with W1 and W2 independent. Then allow ”swaps” with rate

ag(x1, x2) = a
(

1 ∧ e−
[

V(x1)
ε1

+
V(x2)
ε2

]
+
[

V(x2)
ε1

+
V(x1)
ε2

])
.

Particle swapped process: (Xa
1,X

a
2)

µε1(dx1)µ
ε2(dx2) is the unique invariant distribution of (Xa

1,X
a
2).
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INFINITE SWAPPING PROCESS (TWO TEMPERATURES)

INS process (limit process as swap rate a→∞):

dY1 = −∇V(Y1)dt +
√

2ε1ρ(Y1,Y2) + 2ε2ρ(Y2,Y1)dW1

dY2 = −∇V(Y2)dt +
√

2ε2ρ(Y1,Y2) + 2ε1ρ(Y2,Y1)dW2,

where
ρ(x1, x2) = e−

[
V(x1)
ε1

+
V(x2)
ε2

]/
Zρ(x1, x2),

Zρ(x1, x2) = e−
[

V(x1)
ε1

+
V(x2)
ε2

]
+ e−

[
V(x2)
ε1

+
V(x1)
ε2

]
.

The unique invariant distribution of (Y1,Y2) becomes
[µε1(dx1)µ

ε2(dx2) + µε2(dx1)µ
ε1(dx2)]/2.

Weighted empirical measure:

ηT(dx) =
1
T

∫ T

0

[
ρ(Y1,Y2)δ(Y1,Y2) + ρ(Y2,Y1)δ(Y2,Y1)

]
dt,

Use ηT(A× Rd) as an estimate of µε(A).
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K-TEMPERATURE INS ALGORITHM

K-temperature INS process {Xε(t)}t≥0 = {(Xε
1(t), . . . ,X

ε
K(t))}t≥0 for a

given α = (α1, α2, . . . , αK) with 1 = α1 ≥ α2 ≥ · · · ≥ αK:
dXε

1 = −∇V (Xε
1) dt +

√
2ε
√
ρε11/α1 + ρε12/α2 + · · ·+ ρε1K/αKdW1

...
dXε

K = −∇V (Xε
K) dt +

√
2ε
√
ρεK1/α1 + ρεK2/α2 + · · ·+ ρεKK/αKdWK

,

where

ρεij
.
=

∑
σ:σ(j)=i

wε (xσ;α) , wε (x;α)
.
=

exp[− 1
ε

∑K
`=1 α`V (x`)]∑

σ∈ΣK
exp[− 1

ε

∑K
`=1 α`V(xσ(`))]

.

INS estimator of µε(A) is defined as

θε,TINS
.
=

1
T

∫ T

0

∑
σ∈ΣK

wε (Xε
σ (t) ;α) 1A(Xε

σ(1)(t))dt.

Question: How to choose α?
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UNBIASEDNESS AND DECAY RATE OF VARIANCE

Time scale: Good estimation requires Tε = e
1
ε c for some c > 0.

DEFINITION

An estimator θε,T
ε

of µε(A) is called essentially unbiased if there is
c0 ∈ (0,∞) such that

lim inf
ε→0

−ε log
∣∣∣Eθε,Tε

− µε(A)
∣∣∣ ≥ lim

ε→0
−ε logµε(A) + c0.

DEFINITION

The decay rate of the variance (per unit time) of θε,T
ε

is defined
as lim

ε→0
−ε log

(
Var

(
θε,T

ε
)

Tε
)
.

� Performance benchmark is 2 limε→0−ε logµε(A).
� Not the best possible decay rate, but the best practically

achievable decay rate.
� Optimize decay rate among essentially unbiased estimators.
� Conflict between improving the decay rate and achieving

essential unbiasedness is insignificant.
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SMALL-NOISE DIFFUSION AND QUASIPOTENTIAL

Consider {Xε
t }0≤t≤T satisfies

dXεt = b(Xεt )dt +
√
εσ(Xεt )dWt, Xε0 = x.

Let {Oi}i∈L be all the equilibrium points of ẋt = b(xt) and {Xεt } has an unique
invariant distribution µε satisfying

lim
ε→0
−ε logµε(O1) < lim

ε→0
−ε logµε(Oi).

Under some conditions, {Xεt } satisfies a large deviation principle with rate
function IT for any T ∈ (0,∞).

The quasipotential is as

Q(x, y) .= inf {IT(φ) : φ(0) = x, φ(T) = y,T <∞} .

DEFINITION

Given a subset W ⊂ L, a directed graph consisting of arrows i→ j
(i ∈ L \W, j ∈ L, i 6= j) is called a W-graph on L if
1. every point i ∈ L \W is the initial point of exactly one arrow.

2. for any point i ∈ L \W, there exists a sequence of arrows leading from i
to some point in W.

8
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W-GRAPHS

Example: L = {1, 2, 3, 4} and W = {1}.

Denote the set of all W-graphs by G(W).

DEFINITION

For all i ∈ L,

W (Oi)
.
= min

g∈G(i)

[∑
(m→n)∈gQ (Om,On)

]
and W (O1 ∪Oi)

.
= min

g∈G(1,i)

[∑
(m→n)∈gQ (Om,On)

]
.

9
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GENERALIZATION OF FREIDLIN-WENTZELL

Freidlin-Wentzell proved that

lim
ε→0
−ε logµε(Bδ(x)) = W(x)−W(O1),

where W(x) .= mini∈L[W(Oi) + Q(Oi, x)].

THEOREM (DUPUIS AND WU, 2020)

Let Tε = e
1
ε c for some c > h ∨ w. Given a continuous function

f : Rd → R and any compact set A ⊂ Rd,

lim inf
ε→0

−ε log

∣∣∣∣∣E
(

1
Tε

∫ Tε

0
e−

1
ε

f(Xε
t )1A (Xεt ) dt

)
−
∫
Rd

e−
1
ε

f(x)1A (x)µε (dx)

∣∣∣∣∣
≥ inf

x∈A
[f (x) + W (x)]−W (O1) + c− (h ∨ w),

with h .
= mini∈L\{1}Q(O1,Oi) and w .

= W(O1)−mini∈L\{1}W(O1 ∪Oi).
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DECAY RATE OF VARIANCE

THEOREM (DUPUIS AND WU, 2020)
Under the same conditions,

lim inf
ε→0

−ε log

(
Tε · Var

(
1

Tε

∫ Tε

0
e−

1
ε f (Xε

t )1A (Xε
t ) dt

))
≥ min

i∈L

(
R(1)

i ∧ R(2)
i ∧ R(3)

i

)
,

where R(1)
i

.
= inf

x∈A
[2f (x) + Q (Oi, x)] + W (Oi)−W (O1) ,

R(2)
1

.
= 2 inf

x∈A
[f (x) + Q (O1, x)]− h,

and for i ∈ L \ {1}

R(2)
i

.
= 2 inf

x∈A
[f (x) + Q (Oi, x)] + W (Oi)− 2W (O1) + W(O1 ∪Oi),

R(3)
i

.
= 2 inf

x∈A
[f (x) + Q (Oi, x)] + 2W (Oi)− 2W (O1)− w.

11
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DOUBLE WELL

THEOREM (DUPUIS AND WU, 2020)

θε,T
ε

INS is an essentially unbiased estimator of µε(A). Moreover,

lim inf
ε→0

−ε log
(

Var
(
θε,T

ε

INS

)
Tε
)
≥

{
r1 (α) ∧ r3 (α) , if A ⊂ (−∞, 0]
r1 (α) ∧ r2 (α) , if A ⊂ [0,∞)

,

where r3 (α)
.
= 2V (A)− αKhL with V(A)

.
= infx∈A V(x) and

r1 (α)
.
= infx∈A×RK−1

[
2

K∑
`=1

α`V (x`)− min
σ∈ΣK

{
K∑
`=1

α`V(xσ(`))

}]
,

r2 (α)
.
= min

i∈{2,...,K+1}

{
2V (A) +

[
i−2∑
`=1

αK−`+1 − αK−i+2

]
(hL − hR)

}
− αKhR.

xL xR
x

hL

hR

• Optimal α∗ = (1, 1/2, . . . , (1/2)K−2, α∗K), where α∗K
is determined by V(A), hL and hR.

• Supremum always ≥ 2V(A)− (1/2)K−2V(A).
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MULTI-WELL

THEOREM (DUPUIS AND WU, 2021)
There exists B ∈ (0,∞) such that the following hold. Consider any α

and let Tε = e
1
ε c for some c > αKB. Then θε,T

ε

INS is essentially
unbiased, and

lim inf
ε→0

−ε log
(

Var(θε,T
ε

INS )Tε
)
≥ r(α)− αKB,

where
r(α)

.
= inf

x∈A×Rd(K−1)

{
2

K∑
`=1

α`V(x`)− min
σ∈ΣK

{
K∑
`=1

α`V(xσ(`))

}}
.

THEOREM (DUPUIS AND WU, 2021)

For any closed set A, and any αK ∈ (0, (1/2)K−1],

sup
(α2,...,αK−1)∈[αK,1]K−2

r(α1, α2, · · · , αK−1, αK) = (2 + αK − (1/2)K−2)V(A).

The supremum is achieved at (α∗1 , . . . , α
∗
K−1) with α∗` = (1/2)`−1 for all `.

13
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SUMMARY

• “Metastability” present a particular challenge for the design of
efficient Monte Carlo methods.

• As such, it is natural to use various asymptotic theories to
understand issues of algorithm design.

• Have presented one use of large deviation ideas in the context of
infinite swapping (and parallel tempering) algorithms to
understand the mechanisms that produce variance reduction.

• INS process with a geometric sequence of temperatures explore
landscape in a organized and meaningful way. (Ongoing work)
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