Analysis and optimization of certain parallel Monte Carlo methods in the low temperature limit

Guo-Jhen Wu* and Paul Dupuis ** RESIM 2021, May 19, 2021

- * Department of Mathematics, KTH Royal Institute of Technology
- ** Division of Applied Mathematics, Brown University

Problem of interest	Metastability 00000	Performance measure	LD properties	Optimality 0000

OUTLINE

- 1. Problem of interest
- 2. Metastability and accelerated Monte Carlo
- 3. Performance measure

4. Large deviation properties of empirical measure of metastable diffusion

5. Optimality in two-well model and multi-well model

Problem of interest

00 00000 00 0000 0000 0000	Problem of interest	Metastability	Performance measure	LD properties	Optimality
	00	00000	00	00000	0000

RARE EVENT PROBABILITIES AND MCMC

Compute probability $\mu^{\varepsilon}(A)$ with respect to a Gibbs measure of the form $\mu^{\varepsilon}(dx) = e^{-V(x)/\varepsilon} dx / Z(\varepsilon),$

where $V : \mathbb{R}^d \to \mathbb{R}$ is the potential of a complex physical system, ε is the temperature of the system, and *A* does not contain the global minimum of *V*.

Problem of interest	Metastability	Performance measure	LD properties	Optimality
00	00000	00	00000	0000

RARE EVENT PROBABILITIES AND MCMC

Compute probability $\mu^{\varepsilon}(A)$ with respect to a Gibbs measure of the form $\mu^{\varepsilon}(dx) = e^{-V(x)/\varepsilon} dx / Z(\varepsilon),$

where $V : \mathbb{R}^d \to \mathbb{R}$ is the potential of a complex physical system, ε is the temperature of the system, and *A* does not contain the global minimum of *V*.

Well-known: $\mu^{\varepsilon}(dx)$ is the unique invariant distribution of the diffusion process $\{X(t)\}_t$ satisfying

 $dX(t) = -\nabla V(X(t)) dt + \sqrt{2\varepsilon} dW(t).$

Problem of interest	Metastability	Performance measure	LD properties	Optimality
00	00000	00	00000	0000

RARE EVENT PROBABILITIES AND MCMC

Compute probability $\mu^{\varepsilon}(A)$ with respect to a Gibbs measure of the form $\mu^{\varepsilon}(dx) = e^{-V(x)/\varepsilon} dx / Z(\varepsilon),$

where $V : \mathbb{R}^d \to \mathbb{R}$ is the potential of a complex physical system, ε is the temperature of the system, and *A* does not contain the global minimum of *V*.

Well-known: $\mu^{\varepsilon}(dx)$ is the unique invariant distribution of the diffusion process $\{X(t)\}_t$ satisfying

 $dX(t) = -\nabla V(X(t)) dt + \sqrt{2\varepsilon} dW(t).$

Markov Chain Monte Carlo (MCMC)

The empirical measure over a large time *T*:

$$\lambda^T(dx) = rac{1}{T}\int_0^T \delta_{X(t)}(dx) dt \in \mathcal{P}(\mathbb{R}^d).$$

Use $\lambda^T(A)$ for some large *T* as an estimate of $\mu^{\varepsilon}(A)$.

Metastability

Problem of interest	Metastability O●OOO	Performance measure	LD properties	Optimality 0000

EXPONENTIAL EXIT TIME

In general V contains many deep and shallow local minima.

Problem of interest	Metastability ○●○○○	Performance measure	LD properties	Optimality 0000

EXPONENTIAL EXIT TIME

In general V contains many deep and shallow local minima.

Exponential exit time: Mean transition time from one local minimum to another is roughly $\exp(h/\varepsilon)$ when the temperature ε is small, where *h* is the barrier height.

Problem of interest	Metastability	Performance measure	LD properties	Optimality
00	00000	00	00000	0000

PARALLEL TEMPERING (TWO TEMPERATURES)

Besides $\varepsilon_1 = \varepsilon$, introduce higher temperature $\varepsilon_2 = \varepsilon/\alpha$ with $\alpha \in (0, 1)$.

 $dX_1 = -\nabla V(X_1)dt + \sqrt{2\varepsilon_1}dW_1$ $dX_2 = -\nabla V(X_2)dt + \sqrt{2\varepsilon_2}dW_2,$

with W_1 and W_2 independent. Then allow "swaps" with rate

$$ag(x_1, x_2) = a\left(1 \wedge e^{-\left[\frac{V(x_1)}{\varepsilon_1} + \frac{V(x_2)}{\varepsilon_2}\right] + \left[\frac{V(x_2)}{\varepsilon_1} + \frac{V(x_1)}{\varepsilon_2}\right]}\right).$$

Problem of interest	Metastability	Performance measure	LD properties	Optimality
00	00000	00	00000	0000

PARALLEL TEMPERING (TWO TEMPERATURES)

Besides $\varepsilon_1 = \varepsilon$, introduce higher temperature $\varepsilon_2 = \varepsilon/\alpha$ with $\alpha \in (0, 1)$.

 $dX_1 = -\nabla V(X_1)dt + \sqrt{2\varepsilon_1}dW_1$ $dX_2 = -\nabla V(X_2)dt + \sqrt{2\varepsilon_2}dW_2,$

with W_1 and W_2 independent. Then allow "swaps" with rate

$$ag(x_1, x_2) = a\left(1 \wedge e^{-\left[\frac{V(x_1)}{\varepsilon_1} + \frac{V(x_2)}{\varepsilon_2}\right] + \left[\frac{V(x_2)}{\varepsilon_1} + \frac{V(x_1)}{\varepsilon_2}\right]}\right).$$

Particle swapped process: (X_1^a, X_2^a)

 $\mu^{\varepsilon_1}(dx_1)\mu^{\varepsilon_2}(dx_2)$ is the unique invariant distribution of (X_1^a, X_2^a) .

Problem of interest	Metastability	Performance measure	LD properties	Optimality
00	00000	00	00000	0000

INFINITE SWAPPING PROCESS (TWO TEMPERATURES)

INS process (limit process as swap rate $a \to \infty$):

 $dY_1 = -\nabla V(Y_1)dt + \sqrt{2\varepsilon_1\rho(Y_1, Y_2) + 2\varepsilon_2\rho(Y_2, Y_1)}dW_1$ $dY_1 = -\nabla V(Y_1)dt + \sqrt{2\varepsilon_1\rho(Y_1, Y_2) + 2\varepsilon_2\rho(Y_2, Y_1)}dW_1$

 $dY_2 = -\nabla V(Y_2)dt + \sqrt{2\varepsilon_2\rho(Y_1, Y_2) + 2\varepsilon_1\rho(Y_2, Y_1)}dW_2,$

where

$$\begin{split} \rho(x_1, x_2) &= \left. e^{-\left[\frac{V(x_1)}{\varepsilon_1} + \frac{V(x_2)}{\varepsilon_2}\right]} \right/ Z_{\rho}(x_1, x_2), \\ Z_{\rho}(x_1, x_2) &= e^{-\left[\frac{V(x_1)}{\varepsilon_1} + \frac{V(x_2)}{\varepsilon_2}\right]} + e^{-\left[\frac{V(x_2)}{\varepsilon_1} + \frac{V(x_1)}{\varepsilon_2}\right]}, \end{split}$$

The unique invariant distribution of (Y_1, Y_2) becomes $[\mu^{\varepsilon_1}(dx_1)\mu^{\varepsilon_2}(dx_2) + \mu^{\varepsilon_2}(dx_1)\mu^{\varepsilon_1}(dx_2)]/2.$

Weighted empirical measure:

$$\eta^{T}(dx) = \frac{1}{T} \int_{0}^{T} \left[\rho(Y_{1}, Y_{2}) \delta_{(Y_{1}, Y_{2})} + \rho(Y_{2}, Y_{1}) \delta_{(Y_{2}, Y_{1})} \right] dt$$

Use $\eta^T(A \times \mathbb{R}^d)$ as an estimate of $\mu^{\varepsilon}(A)$.

 Problem of interest
 Metastability
 Performance measure
 LD properties
 Optimality

 00
 0000●
 00
 00000
 00000
 00000

K-TEMPERATURE INS ALGORITHM

K-temperature INS process $\{X^{\varepsilon}(t)\}_{t\geq 0} = \{(X_1^{\varepsilon}(t), \dots, X_K^{\varepsilon}(t))\}_{t\geq 0}$ for a given $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_K)$ with $1 = \alpha_1 \geq \alpha_2 \geq \dots \geq \alpha_K$:

$$\begin{cases} dX_{1}^{\varepsilon} = -\nabla V\left(X_{1}^{\varepsilon}\right)dt + \sqrt{2\varepsilon}\sqrt{\rho_{11}^{\varepsilon}/\alpha_{1} + \rho_{12}^{\varepsilon}/\alpha_{2} + \dots + \rho_{1K}^{\varepsilon}/\alpha_{K}}dW_{1} \\ \vdots \\ dX_{K}^{\varepsilon} = -\nabla V\left(X_{K}^{\varepsilon}\right)dt + \sqrt{2\varepsilon}\sqrt{\rho_{K1}^{\varepsilon}/\alpha_{1} + \rho_{K2}^{\varepsilon}/\alpha_{2} + \dots + \rho_{KK}^{\varepsilon}/\alpha_{K}}dW_{K} \end{cases},$$

where

$$\rho_{ij}^{\varepsilon} \doteq \sum_{\sigma:\sigma(j)=i} w^{\varepsilon}\left(\mathbf{x}_{\sigma}; \boldsymbol{\alpha}\right), \quad w^{\varepsilon}\left(\mathbf{x}; \boldsymbol{\alpha}\right) \doteq \frac{\exp\left[-\frac{1}{\varepsilon}\sum_{\ell=1}^{K} \alpha_{\ell} V\left(\mathbf{x}_{\ell}\right)\right]}{\sum_{\sigma \in \Sigma_{K}} \exp\left[-\frac{1}{\varepsilon}\sum_{\ell=1}^{K} \alpha_{\ell} V(\mathbf{x}_{\sigma(\ell)})\right]}.$$

INS estimator of $\mu^{\varepsilon}(A)$ is defined as

$$\theta_{\mathsf{INS}}^{\varepsilon,T} \doteq \frac{1}{T} \int_{0}^{T} \sum_{\sigma \in \Sigma_{K}} w^{\varepsilon} \left(\boldsymbol{X}_{\sigma}^{\varepsilon} \left(t \right) ; \boldsymbol{\alpha} \right) \mathbf{1}_{A}(\boldsymbol{X}_{\sigma(1)}^{\varepsilon}(t)) dt$$

 Problem of interest
 Metastability
 Performance measure
 LD properties
 Optimality

 00
 0000●
 00
 00000
 00000
 00000

K-TEMPERATURE INS ALGORITHM

K-temperature INS process $\{X^{\varepsilon}(t)\}_{t\geq 0} = \{(X_1^{\varepsilon}(t), \dots, X_K^{\varepsilon}(t))\}_{t\geq 0}$ for a given $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_K)$ with $1 = \alpha_1 \geq \alpha_2 \geq \dots \geq \alpha_K$:

$$\begin{cases} dX_{1}^{\varepsilon} = -\nabla V\left(X_{1}^{\varepsilon}\right)dt + \sqrt{2\varepsilon}\sqrt{\rho_{11}^{\varepsilon}/\alpha_{1} + \rho_{12}^{\varepsilon}/\alpha_{2} + \dots + \rho_{1K}^{\varepsilon}/\alpha_{K}}dW_{1} \\ \vdots \\ dX_{K}^{\varepsilon} = -\nabla V\left(X_{K}^{\varepsilon}\right)dt + \sqrt{2\varepsilon}\sqrt{\rho_{K1}^{\varepsilon}/\alpha_{1} + \rho_{K2}^{\varepsilon}/\alpha_{2} + \dots + \rho_{KK}^{\varepsilon}/\alpha_{K}}dW_{K} \end{cases}$$

where

$$\rho_{ij}^{\varepsilon} \doteq \sum_{\sigma:\sigma(j)=i} w^{\varepsilon}\left(\mathbf{x}_{\sigma}; \boldsymbol{\alpha}\right), \quad w^{\varepsilon}\left(\mathbf{x}; \boldsymbol{\alpha}\right) \doteq \frac{\exp\left[-\frac{1}{\varepsilon}\sum_{\ell=1}^{K} \alpha_{\ell} V\left(\mathbf{x}_{\ell}\right)\right]}{\sum_{\sigma \in \Sigma_{K}} \exp\left[-\frac{1}{\varepsilon}\sum_{\ell=1}^{K} \alpha_{\ell} V(\mathbf{x}_{\sigma(\ell)})\right]}.$$

INS estimator of $\mu^{\varepsilon}(A)$ is defined as

$$\theta_{\mathsf{INS}}^{\varepsilon,T} \doteq \frac{1}{T} \int_{0}^{T} \sum_{\sigma \in \Sigma_{\mathsf{K}}} w^{\varepsilon} \left(\boldsymbol{X}_{\sigma}^{\varepsilon} \left(t \right) ; \boldsymbol{\alpha} \right) \mathbf{1}_{A}(\boldsymbol{X}_{\sigma(1)}^{\varepsilon}(t)) dt$$

Question: How to choose α ?

Performance measure

00 00000 0 00000 0000	Problem of interest	Metastability	Performance measure	LD properties	Optimality
	00	00000	0•	00000	0000

Time scale: Good estimation requires $T^{\varepsilon} = e^{\frac{1}{\varepsilon}c}$ for some c > 0.

DEFINITION

An estimator $\theta^{\varepsilon,T^{\varepsilon}}$ of $\mu^{\varepsilon}(A)$ is called **essentially unbiased** if there is $c_0 \in (0,\infty)$ such that $\liminf_{\varepsilon \to 0} -\varepsilon \log \left| E\theta^{\varepsilon,T^{\varepsilon}} - \mu^{\varepsilon}(A) \right| \ge \lim_{\varepsilon \to 0} -\varepsilon \log \mu^{\varepsilon}(A) + c_0.$

DEFINITION

00 00000 0 00000 0000	Problem of interest	Metastability	Performance measure	LD properties	Optimality
	00	00000	0•	00000	0000

Time scale: Good estimation requires $T^{\varepsilon} = e^{\frac{1}{\varepsilon}c}$ for some c > 0.

DEFINITION

An estimator $\theta^{\varepsilon,T^{\varepsilon}}$ of $\mu^{\varepsilon}(A)$ is called **essentially unbiased** if there is $c_0 \in (0,\infty)$ such that $\liminf_{\varepsilon \to 0} -\varepsilon \log \left| E\theta^{\varepsilon,T^{\varepsilon}} - \mu^{\varepsilon}(A) \right| \ge \lim_{\varepsilon \to 0} -\varepsilon \log \mu^{\varepsilon}(A) + c_0.$

DEFINITION

The decay rate of the variance (per unit time) of $\theta^{\varepsilon,T^{\varepsilon}}$ is defined as $\lim_{\varepsilon \to 0} -\varepsilon \log \left(\operatorname{Var} \left(\theta^{\varepsilon,T^{\varepsilon}} \right) T^{\varepsilon} \right).$

♦ Performance benchmark is $2 \lim_{\epsilon \to 0} -\epsilon \log \mu^{\epsilon}(A)$.

00 00000 0 00000 0000	Problem of interest	Metastability	Performance measure	LD properties	Optimality
	00	00000	0•	00000	0000

Time scale: Good estimation requires $T^{\varepsilon} = e^{\frac{1}{\varepsilon}c}$ for some c > 0.

DEFINITION

An estimator $\theta^{\varepsilon,T^{\varepsilon}}$ of $\mu^{\varepsilon}(A)$ is called **essentially unbiased** if there is $c_0 \in (0,\infty)$ such that $\liminf_{\varepsilon \to 0} -\varepsilon \log \left| E\theta^{\varepsilon,T^{\varepsilon}} - \mu^{\varepsilon}(A) \right| \ge \lim_{\varepsilon \to 0} -\varepsilon \log \mu^{\varepsilon}(A) + c_0.$

DEFINITION

- ♦ Performance benchmark is $2 \lim_{\epsilon \to 0} -\epsilon \log \mu^{\epsilon}(A)$.
- Not the best possible decay rate, but the best practically achievable decay rate.

00 00000 0 00000 0000	Problem of interest	Metastability	Performance measure	LD properties	Optimality
	00	00000	0•	00000	0000

Time scale: Good estimation requires $T^{\varepsilon} = e^{\frac{1}{\varepsilon}c}$ for some c > 0.

DEFINITION

An estimator $\theta^{\varepsilon,T^{\varepsilon}}$ of $\mu^{\varepsilon}(A)$ is called **essentially unbiased** if there is $c_0 \in (0,\infty)$ such that $\liminf_{\varepsilon \to 0} -\varepsilon \log \left| E\theta^{\varepsilon,T^{\varepsilon}} - \mu^{\varepsilon}(A) \right| \ge \lim_{\varepsilon \to 0} -\varepsilon \log \mu^{\varepsilon}(A) + c_0.$

DEFINITION

- ♦ Performance benchmark is $2 \lim_{\epsilon \to 0} -\epsilon \log \mu^{\epsilon}(A)$.
- Not the best possible decay rate, but the best practically achievable decay rate.
- Optimize decay rate among essentially unbiased estimators.

00 00000 0 00000 0000	Problem of interest	Metastability	Performance measure	LD properties	Optimality
	00	00000	0•	00000	0000

Time scale: Good estimation requires $T^{\varepsilon} = e^{\frac{1}{\varepsilon}c}$ for some c > 0.

DEFINITION

An estimator $\theta^{\varepsilon,T^{\varepsilon}}$ of $\mu^{\varepsilon}(A)$ is called **essentially unbiased** if there is $c_0 \in (0,\infty)$ such that $\liminf_{\varepsilon \to 0} -\varepsilon \log \left| E\theta^{\varepsilon,T^{\varepsilon}} - \mu^{\varepsilon}(A) \right| \ge \lim_{\varepsilon \to 0} -\varepsilon \log \mu^{\varepsilon}(A) + c_0.$

DEFINITION

- ♦ Performance benchmark is $2 \lim_{\epsilon \to 0} -\epsilon \log \mu^{\epsilon}(A)$.
- Not the best possible decay rate, but the best practically achievable decay rate.
- Optimize decay rate among essentially unbiased estimators.
- Conflict between improving the decay rate and achieving essential unbiasedness is insignificant.

LD properties

Problem of interest	Metastability	Performance measure	LD properties	Optimality
00	00000	00	0000	0000

SMALL-NOISE DIFFUSION AND QUASIPOTENTIAL

Consider $\{X_t^{\varepsilon}\}_{0 \le t \le T}$ satisfies

$$dX_t^{\varepsilon} = b(X_t^{\varepsilon})dt + \sqrt{\varepsilon}\sigma(X_t^{\varepsilon})dW_t, \quad X_0^{\varepsilon} = x.$$

Let $\{O_i\}_{i \in L}$ be all the equilibrium points of $\dot{x}_t = b(x_t)$ and $\{X_t^{\varepsilon}\}$ has an unique invariant distribution μ^{ε} satisfying

 $\lim_{\varepsilon \to 0} -\varepsilon \log \mu^{\varepsilon}(O_1) < \lim_{\varepsilon \to 0} -\varepsilon \log \mu^{\varepsilon}(O_i).$

Under some conditions, $\{X_t^{\varepsilon}\}$ satisfies a large deviation principle with rate function I_T for any $T \in (0, \infty)$.

Problem of interest	Metastability	Performance measure	LD properties	Optimality
00	00000	00	0000	0000

SMALL-NOISE DIFFUSION AND QUASIPOTENTIAL

Consider $\{X_t^{\varepsilon}\}_{0 \le t \le T}$ satisfies

$$dX_t^{\varepsilon} = b(X_t^{\varepsilon})dt + \sqrt{\varepsilon}\sigma(X_t^{\varepsilon})dW_t, \quad X_0^{\varepsilon} = x.$$

Let $\{O_i\}_{i \in L}$ be all the equilibrium points of $\dot{x}_t = b(x_t)$ and $\{X_t^{\varepsilon}\}$ has an unique invariant distribution μ^{ε} satisfying

 $\lim_{\varepsilon \to 0} -\varepsilon \log \mu^{\varepsilon}(O_1) < \lim_{\varepsilon \to 0} -\varepsilon \log \mu^{\varepsilon}(O_i).$

Under some conditions, $\{X_t^{\varepsilon}\}$ satisfies a large deviation principle with rate function I_T for any $T \in (0, \infty)$. The quasipotential is as

 $Q(x,y) \doteq \inf \{I_T(\phi) : \phi(0) = x, \phi(T) = y, T < \infty\}.$

Problem of interest	Metastability	Performance measure	LD properties	Optimality
00	00000	00	0000	0000

SMALL-NOISE DIFFUSION AND QUASIPOTENTIAL

Consider $\{X_t^{\varepsilon}\}_{0 \le t \le T}$ satisfies

$$dX_t^{\varepsilon} = b(X_t^{\varepsilon})dt + \sqrt{\varepsilon}\sigma(X_t^{\varepsilon})dW_t, \quad X_0^{\varepsilon} = x.$$

Let $\{O_i\}_{i \in L}$ be all the equilibrium points of $\dot{x}_t = b(x_t)$ and $\{X_t^{\varepsilon}\}$ has an unique invariant distribution μ^{ε} satisfying

 $\lim_{\varepsilon \to 0} -\varepsilon \log \mu^{\varepsilon}(O_1) < \lim_{\varepsilon \to 0} -\varepsilon \log \mu^{\varepsilon}(O_i).$

Under some conditions, $\{X_t^{\varepsilon}\}$ satisfies a large deviation principle with rate function I_T for any $T \in (0, \infty)$. The quasipotential is as

 $Q(x,y) \doteq \inf \left\{ I_T(\phi) : \phi(0) = x, \phi(T) = y, T < \infty \right\}.$

DEFINITION

Given a subset $W \subset L$, a directed graph consisting of arrows $i \rightarrow j$

 $(i \in L \setminus W, j \in L, i \neq j)$ is called a *W*-graph on *L* if

- 1. every point $i \in L \setminus W$ is the initial point of exactly one arrow.
- for any point *i* ∈ *L* \ *W*, there exists a sequence of arrows leading from *i* to some point in *W*.

Problem of interest	Metastability 00000	Performance measure	LD properties ○O●OO	Optimality 0000

W-GRAPHS

Example: $L = \{1, 2, 3, 4\}$ and $W = \{1\}$.

Denote the set of all *W*-graphs by G(W).

DEFINITION For all $i \in L$, $W(O_i) \doteq \min_{g \in G(i)} \left[\sum_{(m \to n) \in g} Q(O_m, O_n) \right]$ and $W(O_1 \cup O_i) \doteq \min_{g \in G(1,i)} \left[\sum_{(m \to n) \in g} Q(O_m, O_n) \right].$

Problem of interest	Metastability	Performance measure	LD properties	Optimality
00	00000	00	00000	0000

GENERALIZATION OF FREIDLIN-WENTZELL

Freidlin-Wentzell proved that

$$\lim_{\varepsilon \to 0} -\varepsilon \log \mu^{\varepsilon}(B_{\delta}(x)) = W(x) - W(O_1),$$

where $W(x) \doteq \min_{i \in L} [W(O_i) + Q(O_i, x)].$

THEOREM (DUPUIS AND WU, 2020)

Let $T^{\varepsilon} = e^{\frac{1}{\varepsilon}c}$ for some $c > h \lor w$. Given a continuous function $f : \mathbb{R}^d \to \mathbb{R}$ and any compact set $A \subset \mathbb{R}^d$,

$$\begin{split} \liminf_{\varepsilon \to 0} &-\varepsilon \log \left| E\left(\frac{1}{T^{\varepsilon}} \int_{0}^{T^{\varepsilon}} e^{-\frac{1}{\varepsilon} f\left(X_{t}^{\varepsilon}\right)} \mathbf{1}_{A}\left(X_{t}^{\varepsilon}\right) dt \right) - \int_{\mathbb{R}^{d}} e^{-\frac{1}{\varepsilon} f\left(x\right)} \mathbf{1}_{A}\left(x\right) \mu^{\varepsilon}\left(dx\right) \right| \\ &\geq \inf_{x \in A} \left[f\left(x\right) + W\left(x\right) \right] - W\left(O_{1}\right) + c - (h \lor w), \end{split}$$

with $h \doteq \min_{i \in L \setminus \{1\}} Q(O_1, O_i)$ and $w \doteq W(O_1) - \min_{i \in L \setminus \{1\}} W(O_1 \cup O_i)$.

Problem of interest	Metastability	Performance measure	LD properties	Optimality
00	00000	00	00000	0000

DECAY RATE OF VARIANCE

THEOREM (DUPUIS AND WU, 2020)

Under the same conditions,

$$\begin{split} \liminf_{\varepsilon \to 0} &-\varepsilon \log \left(T^{\varepsilon} \cdot \operatorname{Var} \left(\frac{1}{T^{\varepsilon}} \int_{0}^{T^{\varepsilon}} e^{-\frac{1}{\varepsilon} f(X_{t}^{\varepsilon})} \mathbf{1}_{A} \left(X_{t}^{\varepsilon} \right) dt \right) \right) \\ &\geq \min_{i \in L} \left(R_{i}^{(1)} \wedge R_{i}^{(2)} \wedge R_{i}^{(3)} \right), \end{split}$$

where

$$R_i^{(1)} \doteq \inf_{x \in A} \left[2f(x) + Q(O_i, x) \right] + W(O_i) - W(O_1),$$
$$R_1^{(2)} \doteq 2 \inf_{x \in A} \left[f(x) + Q(O_1, x) \right] - h,$$

and for $i \in L \setminus \{1\}$

 $R_{i}^{(2)} \doteq 2\inf_{x \in A} \left[f(x) + Q(O_{i}, x) \right] + W(O_{i}) - 2W(O_{1}) + W(O_{1} \cup O_{i}),$

 $R_{i}^{(3)} \doteq 2\inf_{x \in A} \left[f(x) + Q(O_{i}, x) \right] + 2W(O_{i}) - 2W(O_{1}) - w.$

Optimality

Problem of interest	Metastability 00000	Performance measure	LD properties 00000	Optimality O●OO

DOUBLE WELL

THEOREM (DUPUIS AND WU, 2020)

$$\begin{split} &\theta_{\mathrm{INS}}^{\varepsilon, T^{\varepsilon}} \text{ is an essentially unbiased estimator of } \mu^{\varepsilon}(A). \text{ Moreover,} \\ &\lim_{\varepsilon \to 0} \inf -\varepsilon \log \left(\operatorname{Var} \left(\theta_{\mathrm{INS}}^{\varepsilon, T^{\varepsilon}} \right) T^{\varepsilon} \right) \geq \begin{cases} &r_{1}\left(\alpha \right) \wedge r_{3}\left(\alpha \right), \text{ if } A \subset (-\infty, 0] \\ &r_{1}\left(\alpha \right) \wedge r_{2}\left(\alpha \right), \text{ if } A \subset [0, \infty) \end{cases}, \\ &\text{where } r_{3}\left(\alpha \right) \doteq 2V\left(A \right) - \alpha_{K}h_{L} \text{ with } V(A) \doteq \inf_{x \in A} V(x) \text{ and} \\ &r_{1}\left(\alpha \right) \doteq \inf_{x \in A \times \mathbb{R}^{K-1}} \left[2\sum_{\ell=1}^{K} \alpha_{\ell} V\left(x_{\ell} \right) - \min_{\sigma \in \Sigma_{K}} \left\{ \sum_{\ell=1}^{K} \alpha_{\ell} V(x_{\sigma(\ell)}) \right\} \right], \\ &r_{2}\left(\alpha \right) \doteq \min_{i \in \{2, \dots, K+1\}} \left\{ 2V\left(A \right) + \left[\sum_{\ell=1}^{i-2} \alpha_{K-\ell+1} - \alpha_{K-i+2} \right] \left(h_{L} - h_{R} \right) \right\} - \alpha_{K}h_{R}. \end{split}$$

Problem of interest	Metastability 00000	Performance measure	LD properties 00000	Optimality O●OO

DOUBLE WELL

THEOREM (DUPUIS AND WU, 2020)

$$\begin{split} \theta_{\mathrm{INS}}^{\varepsilon,T^{\varepsilon}} &\text{ is an essentially unbiased estimator of } \mu^{\varepsilon}(A). \text{ Moreover,} \\ \liminf_{\varepsilon \to 0} -\varepsilon \log \left(\operatorname{Var} \left(\theta_{\mathrm{INS}}^{\varepsilon,T^{\varepsilon}} \right) T^{\varepsilon} \right) \geq \begin{cases} r_{1}\left(\alpha \right) \wedge r_{3}\left(\alpha \right), \text{ if } A \subset \left(-\infty, 0 \right] \\ r_{1}\left(\alpha \right) \wedge r_{2}\left(\alpha \right), \text{ if } A \subset \left[0, \infty \right) \end{cases}, \\ \text{where } r_{3}\left(\alpha \right) \doteq 2V\left(A \right) - \alpha_{K}h_{L} \text{ with } V(A) \doteq \inf_{x \in A} V(x) \text{ and} \\ r_{1}\left(\alpha \right) \doteq \inf_{x \in A \times \mathbb{R}^{K-1}} \left[2\sum_{\ell=1}^{K} \alpha_{\ell}V\left(x_{\ell} \right) - \min_{\sigma \in \Sigma_{K}} \left\{ \sum_{\ell=1}^{K} \alpha_{\ell}V(x_{\sigma(\ell)}) \right\} \right], \\ r_{2}\left(\alpha \right) \doteq \min_{i \in \{2, \dots, K+1\}} \left\{ 2V\left(A \right) + \left[\sum_{\ell=1}^{i-2} \alpha_{K-\ell+1} - \alpha_{K-i+2} \right] \left(h_{L} - h_{R} \right) \right\} - \alpha_{K}h_{R}. \end{split}$$

• Optimal $\alpha^* = (1, 1/2, \dots, (1/2)^{K-2}, \alpha_K^*)$, where α_K^* is determined by $V(A), h_L$ and h_R .

Problem of interest	Metastability 00000	Performance measure	LD properties	Optimality O●OO

DOUBLE WELL

THEOREM (DUPUIS AND WU, 2020)

$$\begin{split} \theta_{\mathrm{INS}}^{\varepsilon,T^{\varepsilon}} &\text{ is an essentially unbiased estimator of } \mu^{\varepsilon}(A). \text{ Moreover,} \\ \lim_{\varepsilon \to 0} \inf_{\varepsilon \to 0} \left(\operatorname{Var}\left(\theta_{\mathrm{INS}}^{\varepsilon,T^{\varepsilon}}\right) T^{\varepsilon} \right) \geq \begin{cases} r_{1}\left(\alpha\right) \wedge r_{3}\left(\alpha\right), \text{ if } A \subset (-\infty,0] \\ r_{1}\left(\alpha\right) \wedge r_{2}\left(\alpha\right), \text{ if } A \subset [0,\infty) \end{cases}, \\ \text{where } r_{3}\left(\alpha\right) \doteq 2V\left(A\right) - \alpha_{K}h_{L} \text{ with } V(A) \doteq \inf_{x \in A} V(x) \text{ and} \\ r_{1}\left(\alpha\right) \doteq \inf_{x \in A \times \mathbb{R}^{K-1}} \left[2\sum_{\ell=1}^{K} \alpha_{\ell}V\left(x_{\ell}\right) - \min_{\sigma \in \Sigma_{K}} \left\{ \sum_{\ell=1}^{K} \alpha_{\ell}V\left(x_{\sigma\left(\ell\right)}\right) \right\} \right], \\ r_{2}\left(\alpha\right) \doteq \min_{i \in \{2, \dots, K+1\}} \left\{ 2V\left(A\right) + \left[\sum_{\ell=1}^{i-2} \alpha_{K-\ell+1} - \alpha_{K-i+2} \right] \left(h_{L} - h_{R}\right) \right\} - \alpha_{K}h_{R}. \end{split}$$

- Optimal α^{*} = (1, 1/2, ..., (1/2)^{K-2}, α^{*}_K), where α^{*}_K is determined by V(A), h_L and h_R.
- Supremum always $\geq 2V(A) (1/2)^{K-2}V(A)$.

Problem of interest	Metastability 00000	Performance measure	LD properties	Optimality 00●0

MULTI-WELL

THEOREM (DUPUIS AND WU, 2021)

There exists $B \in (0, \infty)$ such that the following hold. Consider any α and let $T^{\varepsilon} = e^{\frac{1}{\varepsilon}c}$ for some $c > \alpha_K B$. Then $\theta_{INS}^{\varepsilon,T^{\varepsilon}}$ is essentially unbiased, and

$$\liminf_{\varepsilon \to 0} -\varepsilon \log \left(\operatorname{Var}(\theta_{\operatorname{INS}}^{\varepsilon, T^{\varepsilon}}) T^{\varepsilon} \right) \geq r(\boldsymbol{\alpha}) - \alpha_{K} B,$$

where

$$r(\boldsymbol{\alpha}) \doteq \inf_{x \in A \times \mathbb{R}^{d(K-1)}} \left\{ 2 \sum_{\ell=1}^{K} \alpha_{\ell} V(x_{\ell}) - \min_{\sigma \in \Sigma_{K}} \left\{ \sum_{\ell=1}^{K} \alpha_{\ell} V(x_{\sigma(\ell)}) \right\} \right\}.$$

THEOREM (DUPUIS AND WU, 2021)

For any closed set *A*, and any $\alpha_K \in (0, (1/2)^{K-1}]$,

 $\sup_{(\alpha_2,\ldots,\alpha_{K-1})\in [\alpha_K,1]^{K-2}} r(\alpha_1,\alpha_2,\cdots,\alpha_{K-1},\alpha_K) = (2+\alpha_K-(1/2)^{K-2})V(A).$

The supremum is achieved at $(\alpha_1^*, \ldots, \alpha_{K-1}^*)$ with $\alpha_{\ell}^* = (1/2)^{\ell-1}$ for all ℓ .

Problem of interest	Metastability	Performance measure	LD properties	Optimality 000●
SUMMARY				

- "Metastability" present a particular challenge for the design of efficient Monte Carlo methods.
- As such, it is natural to use various asymptotic theories to understand issues of algorithm design.
- Have presented one use of large deviation ideas in the context of infinite swapping (and parallel tempering) algorithms to understand the mechanisms that produce variance reduction.
- INS process with a geometric sequence of temperatures explore landscape in a organized and meaningful way. (Ongoing work)

Infinite swapping as a limit of parallel tempering:

◊ "On the infinite swapping limit for parallel tempering", Dupuis, Liu, Plattner and Doll, *SIAM J. on MMS*, 10, 986–1022, 2012.

Large deviation estimates:

 "Large Deviation Properties of the Empirical Measure of a Metastable Small Noise Diffusion", Dupuis and Wu, J Theo. Prob., 2020.

Analysis of INS algorithm:

 "Analysis and optimization of certain parallel Monte Carlo methods in the low temperature limit", Dupuis and Wu, submitted, 2021.

CONTACT INFORMATION: Guo-Jhen Wu; gjwu@kth.se