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minimum of V.
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RARE EVENT PROBABILITIES AND MCMC

Compute probability 1°(A) with respect to a Gibbs measure of the
form ,ue(dx) _ e—V(x)/de/ Z(E)

where V : RY — R is the potential of a complex physical system, ¢ is
the temperature of the system, and A does not contain the global
minimum of V.

Well-known: p¢(dx) is the unique invariant distribution of the
diffusion process {X(t)}; satisfying

dX () = =VV (X (t)) dt + V2edW (t) .

Markov Chain Monte Carlo (MCMC)
The empirical measure over a large time T:

A (dx) = / Sx (o (dx)dt € P(RY).

Use AT(A) for some large T as an estimate of u£(A).
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In general V contains many deep and shallow local minima.
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EXPONENTIAL EXIT TIME

In general V contains many deep and shallow local minima.

Exponential exit time: Mean transition time from one local minimum
to another is roughly exp(h/e) when the temperature ¢ is small, where
h is the barrier height.
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PARALLEL TEMPERING (TWO TEMPERATURES)

Besides 1 = ¢, introduce higher temperature e; = ¢/a with « € (0,1).
dX, = —VV(Xl)dt + /2e1dWy
dX, = 7VV(X2)dt + /2e2dWs,

with Wy and W, independent. Then allow "swaps” with rate
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Particle swapped process: (X{, X%)

w1 (dx) u®2 (dxy) is the unique invariant distribution of (X{, X3).
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INFINITE SWAPPING PROCESS (TWO TEMPERATURES)

INS process (limit process as swap rate a — ~):
dY1 = —VV(Y1)dt + \/2e1p(Y1, Y2) + 2e20(Ya, Y1)dW;
dY, = —VV(Yyp)dt + \/2e2p(Y1, Ya) 4 2e1p(Ya, Y1)dWa,

V(x)

V(xy)
p(x1,%2) = oL +522]/Zp(x17x2),

where

V() | V(x) V(xp) | V(xp) }

Zp(xth) :E_{ €1 2 ] +€_[ e =)

The unique invariant distribution of (Y7, Y,) becomes
[ (dey ) =2 (dlea) + 2 (o ) (dez)] /2.

Weighted empirical measure:

1 T
n' (dx) = T/ [p(Y1,Y2)0(v,,v5) + p(Y2, Y1)d(x, vy dt,
0

Use nT(A x RY) as an estimate of (A).
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K-TEMPERATURE INS ALGORITHM

K-temperature INS process {X®(¢) }i>0 = {(X5(t), ..., X% (t)) }i>0 fora
given a = (o, p,...,ag)Withl =a1 > ap > -+ > ax:

dX5 = —VV (X5)dt + V2e\/p5, /a1 + p5,/an + -+ - + p5[axdWh

dXg = —VV (X)) dt + V2e\/py /a1 + pLpfan + -+ + pig/axdWk
where
P = Z W (xo5), W (v ) =
o:o(j)=i
INS estimator of 11°(A) is defined as

oL = / 3w ) 14 (X ) ()i

oEXK

exp[—1 Sy, eV (x0)]
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K-TEMPERATURE INS ALGORITHM

K-temperature INS process {X®(¢) }i>0 = {(X5(t), ..., X% (t)) }i>0 fora
given a = (o, p,...,ag)Withl =a1 > ap > -+ > ax:

dX5 = —VV (X5)dt + V2e\/p5, /a1 + p5,/an + -+ - + p5[axdWh

dXg = —VV (X)) dt + V2e\/py /a1 + pLpfan + -+ + pig/axdWk

where

1 K
=< 1%
= S wa), v (ma)= oD edmaV Gl
oo (j)=i Zoezk exp[*g Zézl agV(xU(e))]

INS estimator of 11°(A) is defined as

oL = / 3w ) 14 (X ) ()i

oEXK

Question: How to choose a?



Performance measure




Performance measure
oce

UNBIASEDNESS AND DECAY RATE OF VARIANCE

Time scale: Good estimation requires T = e=¢ for some ¢ > 0.
DEFINITION

An estimator #=7" of u°(A) is called essentially unbiased if there is
co € (0,00) such that
lim inf —¢ log [E6™" — ME(A)‘ > lim —<log 4*(A) + co.

DEFINITION

The decay rate of the variance (per unit time) of 9" is defined
as lim e log (Var (eﬂi) T‘E) :
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UNBIASEDNESS AND DECAY RATE OF VARIANCE

Time scale: Good estimation requires T = e=¢ for some ¢ > 0.

DEFINITION
An estimator #=7" of u°(A) is called essentially unbiased if there is
co € (0,00) such that
lim inf —¢ log [E65T" — ME(A)‘ > lim —¢ log p° (A) + co.
e—0 e—0

DEFINITION
The decay rate of the variance (per unit time) of 9" is defined
as lim e log (Var (eﬂi) T‘E) :

o Performance benchmark is 2 lim._,g —¢ log u°(A).

< Not the best possible decay rate, but the best practically
achievable decay rate.

< Optimize decay rate among essentially unbiased estimators.

o Conflict between improving the decay rate and achieving
essential unbiasedness is insignificant.
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SMALL-NOISE DIFFUSION AND QUASIPOTENTIAL

Consider { X} }o<:<T satisfies
dX; = b(X0)dt + Ve (XD)dW,, X5 = x.

Let {O;}ic. be all the equilibrium points of x; = b(x;) and {X} } has an unique
invariant distribution p° satisfying

lim —elog u*(0O1) < lim —elog p° (O;).
e—0 e—0

Under some conditions, { X} } satisfies a large deviation principle with rate
function Iy for any T € (0, c0).
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SMALL-NOISE DIFFUSION AND QUASIPOTENTIAL

Consider { X} }o<:<T satisfies
dX; = b(X7)dt + Veo(XD)dW:, X5 = x.

Let {O;}ic. be all the equilibrium points of x; = b(x;) and {X} } has an unique
invariant distribution p° satisfying

lim —elog u*(0O1) < lim —elog p° (O;).

e—0 e—0
Under some conditions, { X} } satisfies a large deviation principle with rate
function I for any T € (0, c0). The quasipotential is as

Q(x,y) = inf{Ir(¢) : $(0) =x,¢(T) =y, T < oo} .
DEFINITION
Given a subset W C L, a directed graph consisting of arrows i — j
(ie L\W,jeL,i#j)is called a W-graph on L if
1. every pointi € L\ W is the initial point of exactly one arrow.

2. for any pointi € L \ W, there exists a sequence of arrows leading from i
to some point in W.
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W-GRAPHS

Example: L = {1,2,3,4} and W = {1}.

2 & 2, +

/

) ér————"j' )

e

Denote the set of all W-graphs by G(W).

DEFINITION
Forallie L,
W(0) = i [Zr-mes Om O]
and . .
W(O1U0) = min (S snee (O O]
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GENERALIZATION OF FREIDLIN-WENTZELL

Freidlin-Wentzell proved that
lim —elog u°(Bs(x)) = W(x) = W(On),
where W(x) = min;c; [W(O;) + Q(O;, x)].

THEOREM (DuPuIsS AND Wu, 2020)

Let T¢ = e=¢ for some ¢ > h v w. Given a continuous function
f:R?— R and any compact set A C R?,

1 — i) c 15 e
E F/ e I\, (XF)dt —/ e W1, (x) pf (dx)
0 R4

> inf [f (x) + W (1)) = W(O1) + ¢ — (h v w),

lim inf —e log
e—0

with h = minieL\{l} Q(O], Ol) and w = W(O1) — minieL\{l} W(Ol U Ol)
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DECAY RATE OF VARIANCE

THEOREM (DuPUIS AND Wu, 2020)
Under the same conditions,

1 /T
lim inf —¢ log (T6 - Var (/
e—0 TE 0

: ©) 2 ®3)
> Izréan (Ri AR;” AR, ) ,

£

e~ (X1, (Xf)dt))

R =2inf [f (x) +Q (01, x)] — h,
andforie L\ {1}

R® =2inf [f (x) + Q (01, x)] + W (0:) — 2W (O1) + W(O1 U 03),

R = 2inf [f (x) + Q (01, x)] +2W (0:) — 2W (O1) — w.
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DOUBLE WELL

THEOREM (DuPUIS AND Wu, 2020)

6% is an essentially unbiased estimator of °(A). Moreover,

e c 7\ e rn(a)Ar(a), if AC (—o0,0]
lim inf —¢ log (Var (HINS ) T ) = { n(e) An(a), ifAC[0,00)

bl

where r3 (o) = 2V (A) — axhr with V(A) = inf,c4 V(x) and

ZZOLZV(.X'[) — oI-IEHZI}( {Zan(xa(e))H )
=1

rn(a) = il’lfxeAXRK—l

=1
i—2
= i e+l — QK hi — hg) p — axhg.
72 () e {ZV(A)+ ;OM 0+1 — 0K +z:| (he R)} axhr
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YN * Optimal a* = (1,1/2,...,(1/2)%72,a%), where a}
is determined by V(A), hy and hg.
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DOUBLE WELL

THEOREM (DuPUIS AND Wu, 2020)

6% is an essentially unbiased estimator of °(A). Moreover,

e c 7\ e rn(a)Ar(a), if AC (—o0,0]
lim inf —¢ log (Var (HINS ) T ) = { n(e) An(a), ifAC[0,00)

bl

where r3 (o) = 2V (A) — axhr with V(A) = inf,c4 V(x) and

ZZOLZV(.X'[) — oI-IEHZI}( {Zan(xa(e))H )
=1

=1

rn(a) = il’lfxeAXRK—l

i—2

Z OK—p41 — OéKi+2:| (h — hR)} — axhg.

=1

YN * Optimal a* = (1,1/2,...,(1/2)%72,a%), where a}
is determined by V(A), hy and hg.

\/ 1\/ ~ « Supremum always > 2V(A) — (1/2)K-2V(A).

(o) = mir[1<+1} {ZV (A) +
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MULTI-WELL

THEOREM (DuUPUIS AND WU, 2021)

There exists B € (0, o) such that the following hold. Consider any «
and let T = e=¢ for some ¢ > axB. Then ogg; is essentially
unbiased, and

ligljglf —clog (Var(GIEI\’]gE)TS) > r(a) — akB,

where K
R {ZZW )= iy {Z Ve }} -

1

THEOREM (DuPUIS AND Wu, 2021)
For any closed set A, and any ax € (0, (1/2)X-1],

sup r(on, o, -+ yak—1,0k) = (2 4+ ax — (1/2)K_2)V(A).

(ag...;ax 1) €[ag,1]K=2

The supremum is achieved at (of, ..., ag_;) with o = (1/2)“! for all £.
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SUMMARY

» “Metastability” present a particular challenge for the design of
efficient Monte Carlo methods.

» As such, it is natural to use various asymptotic theories to
understand issues of algorithm design.

» Have presented one use of large deviation ideas in the context of
infinite swapping (and parallel tempering) algorithms to
understand the mechanisms that produce variance reduction.

* INS process with a geometric sequence of temperatures explore
landscape in a organized and meaningful way. (Ongoing work)
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