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Rare events and large deviations
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dynamics of the system is dominated by energetic effects (as opposed to entropic effects),
such bottlenecks can be identified with saddle points in the potential energy surface. In this
case, saddle points are transition states, activated states from which the system can access
different stable states through small fluctuations. Comparing stable states with transition
states one can often infer the mechanism of the reaction. Reaction rate constants, which are
very important because they are directly comparable to experimental observables, can then
be determined via transition state theory (TST). If the transition state theory estimate of
the reaction rate constant is not sufficiently accurate, the reactive flux formalism, in which
dynamical corrections to simple transition state theory are calculated from dynamical tra-
jectories initiated at the transition state, can provide the desired corrections1.

Fig. 1. Transitions pathways connecting stable states A and B on a caricature of a complex energy landscape.

While transition state theory and its modern variants can be very successful in simple
(small or highly ordered) systems, complex systems with strongly non-linear potential en-
ergy landscapes require an entirely different approach. In such complex systems the saddle
points in the potential energy surface cease to be characteristic points of the free energy
barrier. Instead, the free energy barrier may encompass a large set of configurations some
of which are stationary points but most are not (see Fig. 1). One may hope to be guided
by physical intuition in the search of transition states, in effect postulating the reaction
coordinate. But the relevant degrees of freedom may be highly collective and therefore
difficult to anticipate. This problem can be overcome with the transition path sampling
approach 2,3,4,5. Based on a statistical mechanics of trajectories, this method focuses on
those segments of the time evolution where the rare, but important events actually occur,
thus avoiding long intervening waiting times between. Since in such a complex system rare
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Dynamical large deviations

• Markov process: Xt

• Observable: AT

Direct problem

P(AT = a) � e−TI (a)

Dual problem

E [eTkAT ] � eTλ(k)

Prediction problem

How is fluctuation created?

• Reaction or optimal path

• Conditioning: Xt |AT = a

t
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aL
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x
(t
)

Hugo Touchette (Stellenbosch) Large deviation estimation May 2021 3 / 1



Numerical and simulation techniques
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• Numerical methods

• Sampling methods

• Thermo limit

• Low noise

• Long time

• Reversible processes

• Non-reversible

This talk
• Importance sampling

• Efficiency conditions
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Long-time large deviations

[Review: HT Physica A 2018]

• Process:

dXt = F (Xt)dt + σdWt

• Observable:

AT =
1

T

∫ T

0
f (Xt) dt +

1

T

∫ T

0
g(Xt) ◦ dXt

• Large deviation principle:

P(AT = a) � e−TI (a), T →∞
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Examples

• Occupation, current, activity, etc.

• Stochastic thermo: Work, heat, entropy production
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Spectral problem

Scaled cumulant generating fct

λ(k) = lim
T→∞

1

T
lnE [eTkAT ]

Gärtner-Ellis Theorem

λ(k) differentiable, then

1 P(AT = a) � e−TI (a)

2 I (a) = sup
k∈R
{ka− λ(k)}

Perron–Frobenius

Lk rk = λ(k)rk

• Tilted (twisted) operator:

Lk = F · (∇+ kg) +
D

2
(∇+ kg)2 + kf

• Dominant eigenvalue: λ(k)

• Dominant eigenfunction: rk(x)
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Prediction problem

[Chetrite & HT PRL 2013, AHP 2015, JSTAT 2015]

Driven process

dX̃t = F̃ (X̃t)dt + σdWt

• Modified drift:

F̃ (x) = F (x)+σ2(kg+∇ ln rk), I ′(a) = k

Interpretation

Xt |AT = a︸ ︷︷ ︸
conditioned

T→∞∼= X̃t︸︷︷︸
driven

t

xHtL
a

PHA T=
aL

• Effective process creating fluctuation

• Generalization of reaction path / instanton
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Direct sampling

P(AT = a) � e−TI (a) AT = AT [x ]

• Sample:{
{x (j)

t }Tt=0

}L

j=1
→ {A(j)

T }Lj=1

• Estimators:

P̂T ,L(a) =
1

L

L∑
j=1

1[a,a+∆a](A
(j)
T )

ÎT ,L(a) = − 1

T
ln P̂T ,L(a)

t

xHtL
a
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Repeat for increasing L (sample size) and T (LD limit)
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Importance sampling

Change process to hit rare event more often (reweighting)

• Modified process: X̃t ∼ Q

• Sample:{
{x̃ (j)

t }Tt=0

}L

j=1
→ {A(j)

T }Lj=1

• Estimator:

P̂T ,L(a) =
1

L

L∑
j=1

1[a,a+∆a](A
(j)
T )

dP

dQ
[x̃ (j)]︸ ︷︷ ︸

Likelihood• Unbiased:

P(AT = a) = EP [1a]︸ ︷︷ ︸
direct

= EQ

[
1a

dP

dQ

]
︸ ︷︷ ︸

reweighted

t
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Exponential tilting

• Modified process:

Q[dx ]︸ ︷︷ ︸
modified

=
eTkAT [x]

EQ [eTkAT ]︸ ︷︷ ︸
exp reweighting

P[dx ]︸ ︷︷ ︸
original

• Esscher transform (1932)
• Canonical ensemble

• Likelihood:

dP

dQ
[x ] � e−TAT [x]+Tλ(k)

t

xHtL

a

PHA T=
aL

• Exponential tilting is good IS measure

• Markovian for large T

• Equivalent to driven process

• Problem: Requires LD functions (no free lunch)
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Problems

What is optimal IS process?

• Xt conditioned on AT = a

• Zero variance

• Problem: Process can’t be constructed in general

Good definition of optimal / efficient IS?

• Asymptotic efficiency (AE)

• Exponential tilting is AE

• Problem: Other efficient processes?

How to construct efficient processes?

• Driven process is AE

• Problem: Driven process based on rk (no free lunch)
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Asymptotic efficiency

• IS estimator:

P̂T ,L(a) =
1

L

L∑
j=1

1a(A
(j)
T )

dP

dQ
[x̃ (j)], x̃ (j) ∼ Q

• Variance:

VarQ(P̂T ,L(a)) =
EQ [L2

T 1a(AT )]− PT (a)2

L

Asymptotic efficiency (AE)

• Second moment rate:

EQ [L2
T 1a(AT )] � e−TRQ(a)

• Bound: RQ(a) ≤ 2I (a)

• Q is AE if equality achieved
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Efficiency conditions

Work with Arnaud Guyader (Paris) [Guyader & HT JSP 2020]

• Most works about exponential tilting

• Only sufficient conditions for AE

Find necessary and sufficient conditions for general Q to be AE

EQ [L2
T 1a(AT )], LT =

dP

dQ

1 AE determined by AT and LT
2 Likelihood exponential in T : LT = e−TWT

3 (AT ,WT ) satisfies LDP under Q

EQ [e−2TWT 1a(AT )] �
∫

dw e−2Tw e−TJQ(a,w)︸ ︷︷ ︸
Laplace integral

� e−TRQ(a)

Hugo Touchette (Stellenbosch) Large deviation estimation May 2021 13 / 1



Main result

[Guyader & HT JSP 2020]• Action:

LT = e−TWT , WT = − 1

T
log LT

• Joint LDP:
Q(AT = a,WT = w) � e−TJQ(a,w)

• AE criterion:

inf
w
{2w + JQ(a,w)}︸ ︷︷ ︸

RQ(a)

≤ 2 inf
w
{w + JQ(a,w)}︸ ︷︷ ︸

I (a)

Theorem

Q is AE if and only if

• There exists w∗ such that JQ(a,w∗) = 0 (Typicality condition)

• Left w -slope of JQ(a,w) at w∗ < −2 (Steepness condition)
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Interpretation

P(AT = a) � e−TI (a), Q(AT = a,WT = w) � e−TJQ(a,w)

EQ [e−2TWT 1a(AT )] �
∫

dw e−2Tw e−TJQ(a,w)

• Typicality condition: AT → a under Q
• Steepness condition: Suppress fluctuations WT < w∗

• Not AE if JQ(a,w) has smooth zero

JQ(a,w)JQ(a,w)JQ(a,w)

www

−2

−2

−1

w∗w∗w∗
0

∞

(a) (b) (c)
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Examples (1/2)

Exponential tilting

• Action: WT = kAT + c

• Rate function:

JQ(a,w) =

{
0 w = ka + c
∞ otherwise

Gaussian sums

Sn =
1

n

n∑
i=1

Xi , Xi ∼ N (0, 1)

• P(Sn ≥ 1) � e−nI , I = 1
2

• X̃i ∼ N (µ, 1)

• µ < 1: No zero. Not AE
• µ = 1: Zero + steep. AE
• µ > 1: Zero, not steep. Not AE
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Examples (2/2)

Exponential sums

Sn =
1

n

n∑
i=1

Xi , Xi ∼ Exp(1), P(Sn ≥ b) � e−nI (b)

I (b) = b − 1− log b

• Exponential tilting: X̃i ∼ Exp(1/b)

• Partial tilting: X̃i ∼ Exp(1/b) i = 1, . . . , n − 1

X̃n ∼ Exp(1)

• AE if b ∈ (1, 2], not AE if b > 2.

Other examples

• Markov chains

• Diffusions

• See [Guyader & HT JSP 2020]
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Other estimators

P̂T ,L(a) =
1

L

L∑
j=1

1a(A
(j)
T ) −→ ÎT ,L(a) = − 1

T
ln P̂T ,L(a)

• Estimate rate function without histograms
• Optimal running cost:

I (a) = lim
T→∞

inf
X̃t

AT =a typical

1

2T

∫ T

0
[F (X̃t)− F̃ (X̃t)]2dt

• Optimal X̃t = driven process [Chetrite & HT JSTAT 2015]

Trade off
• Use exponential LD structure

• Good variance

• Problem: Biased if not optimal
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Conclusion

• New conditions for efficient sampling of large deviations

• Can be applied beyond exponential tilting

• JQ(a,w) explains bad IS cases

• Predicts estimator convergence

Open problems

• Errors when not AE (how bad when not optimal?)

• Bias bounds for control estimators

Ongoing works (from stat phys)

• Adaptive approximations of driven process [Ferré & HT JSP 2018]

• Spectral approximations [Garrahan (Nottingham)]

• Machine learning approaches [E (Princeton), Limmer (Berkeley)]

(Tensor net, neural net, RL)
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Joint large deviations

• Observable: AT

• Action: WT

• Joint SCGF:

λQ(k , γ) = lim
T→∞

1

T
lnEQ [eTkAT +TγWT ]

• Markov processes: λQ(k , γ) = dom eigenvalue

Gärtner–Ellis Theorem

If λQ(k , γ) is differentiable, then

JQ(a,w) = inf
k,γ
{ka + γw − λQ(k, γ)}
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