Large deviation estimators and their efficiency

Hugo Touchette

Department of Mathematical Sciences Stellenbosch University, South Africa

> RESIM 2021 (2020) Paris, France

• Work with Arnaud Guyader (Sorbonne, Paris) Guyader & HT, J. Stat. Phys. 181, 551, 2020

Rare events and large deviations

$$
\mathsf{Prob} \asymp e^{-nl}, \qquad n \to \infty
$$

Low noise/temp

 $n = N$

Thermo limit Hugo Touchette (Stellenbosch) [Large deviation estimation](#page-0-0) May 2021 2/1

 $n = 1/\epsilon$ $n = T$

Ergodic limit

Dynamical large deviations

- Markov process: X_t
- Observable: A_{τ}

Direct problem

$$
P(A_T = a) \asymp e^{-T I(a)}
$$

Dual problem

 $E[e^{TkA_T}] \asymp e^{T\lambda(k)}$

Prediction problem

How is fluctuation created?

- Reaction or optimal path
- Conditioning: $X_t | A_T = a$

Numerical and simulation techniques

- Numerical methods
- Sampling methods
- Thermo limit
- Low noise
- Long time
- Reversible processes
- Non-reversible

This talk

- Importance sampling
- **Efficiency conditions**

Long-time large deviations

[Review: HT Physica A 2018]

Process:

$$
dX_t = F(X_t)dt + \sigma dW_t
$$

• Observable:

$$
A_T = \frac{1}{T} \int_0^T f(X_t) dt + \frac{1}{T} \int_0^T g(X_t) \circ dX_t
$$

Large deviation principle:

$$
P(A_T = a) \asymp e^{-T I(a)}, \quad T \to \infty
$$

Examples

- Occupation, current, activity, etc.
- Stochastic thermo: Work, heat, entropy production

Spectral problem

Scaled cumulant generating fct

$$
\lambda(k) = \lim_{T \to \infty} \frac{1}{T} \ln E[e^{TkA_T}]
$$

Gärtner-Ellis Theorem

 $\lambda(k)$ differentiable, then

$$
\bullet \; P(A_T = a) \asymp e^{-T I(a)}
$$

$$
\bigcirc \; I(a) = \sup_{k \in \mathbb{R}} \{ ka - \lambda(k) \}
$$

Perron–Frobenius

$$
\mathcal{L}_k r_k = \lambda(k) r_k
$$

• Tilted (twisted) operator:

$$
\mathcal{L}_k = F \cdot (\nabla + k g) + \frac{D}{2} (\nabla + k g)^2 + k f
$$

- Dominant eigenvalue: $\lambda(k)$
- Dominant eigenfunction: $r_k(x)$

Prediction problem

[Chetrite & HT PRL 2013, AHP 2015, JSTAT 2015]

Driven process

Interpretation

- $d\tilde{X}_t = \tilde{\digamma}(\tilde{X}_t)dt + \sigma dW_t$
- Modified drift:

$$
\tilde{F}(x) = F(x) + \sigma^2 (kg + \nabla \ln r_k), \quad I'(a) = k
$$

• Effective process creating fluctuation

 $X_t | A_T = a \stackrel{T \to \infty}{\cong} \tilde{X}$

conditioned

• Generalization of reaction path / instanton

t driven

Direct sampling

$$
P(A_T = a) \asymp e^{-T I(a)} \qquad A_T = A_T[x]
$$

Sample:

$$
\left\{\left\{x_t^{(j)}\right\}_{t=0}^T\right\}_{j=1}^L \rightarrow \left\{A_T^{(j)}\right\}_{j=1}^L
$$

Estimators:

$$
\hat{P}_{T,L}(a) = \frac{1}{L} \sum_{j=1}^{L} \mathbf{1}_{[a,a+\Delta a]}(A_T^{(j)})
$$

$$
\hat{I}_{T,L}(a) = -\frac{1}{T} \ln \hat{P}_{T,L}(a)
$$

T

Repeat for increasing L (sample size) and T (LD limit)

Hugo Touchette (Stellenbosch) [Large deviation estimation](#page-0-0) May 2021 8/1

Importance sampling

Change process to hit rare event more often (reweighting)

- Modified process: $\tilde{X}_t \sim Q$
- Sample:

$$
\left\{\{\tilde{x}_t^{(j)}\}_{t=0}^{{\mathcal{T}}}\right\}_{j=1}^L \quad \rightarrow \quad \{A^{(j)}_{{\mathcal{T}}}\}_{j=1}^L
$$

Estimator:

$$
\hat{P}_{T,L}(a) = \frac{1}{L} \sum_{j=1}^{L} \mathbf{1}_{[a,a+\Delta a]}(A_T^{(j)}) \underbrace{\frac{d}{dQ}[\tilde{x}^{(j)}]}_{\text{Likelihood}}
$$
\n• Unbiased:
$$
P(A_T = a) = \underbrace{E_P[\mathbf{1}_a]}_{\text{direct}} = \underbrace{E_Q[\mathbf{1}_a \frac{d}{dQ}]}_{\text{reweighted}}
$$

Exponential tilting

Modified process:

- Esscher transform (1932)
- Canonical ensemble
- Likelihood:

$$
\frac{dP}{dQ}[x] \asymp e^{-TA_T[x]+T\lambda(k)}
$$

- Exponential tilting is good IS measure
- Markovian for large T
- Equivalent to driven process
- Problem: Requires LD functions (no free lunch)

Problems

What is optimal IS process?

- X_t conditioned on $A_T = a$
- Zero variance
- Problem: Process can't be constructed in general

Good definition of optimal / efficient IS?

- Asymptotic efficiency (AE)
- Exponential tilting is AE
- Problem: Other efficient processes?

How to construct efficient processes?

- Driven process is AE
- Problem: Driven process based on r_k (no free lunch)

Asymptotic efficiency

• IS estimator:

$$
\hat{P}_{T,L}(a) = \frac{1}{L} \sum_{j=1}^{L} \mathbf{1}_a(A_T^{(j)}) \frac{dP}{dQ}[\tilde{\mathbf{x}}^{(j)}], \qquad \tilde{\mathbf{x}}^{(j)} \sim Q
$$

• Variance:

$$
\text{Var}_{Q}(\hat{P}_{T,L}(a)) = \frac{E_{Q}[L_T^2 \mathbf{1}_a(A_T)] - P_T(a)^2}{L}
$$

Asymptotic efficiency (AE)

• Second moment rate:

$$
E_Q[L_T^2 \mathbf{1}_a(A_T)] \asymp e^{-TR_Q(a)}
$$

- Bound: $R_Q(a) \leq 2I(a)$
- Q is AE if equality achieved

Efficiency conditions

Work with Arnaud Guyader (Paris) The Music Could be a summer with Arnaud Guyader & HT JSP 2020]

- Most works about exponential tilting
- Only sufficient conditions for AE

Find necessary and sufficient conditions for general Q to be AE

$$
E_Q[L_T^2 \mathbf{1}_a(A_T)], \qquad L_T = \frac{dP}{dQ}
$$

 \bullet AE determined by A_T and L_T \bullet Likelihood exponential in $\mathcal{T}\colon\thinspace \mathcal{L}_\mathcal{T}=e^{-\mathcal{T} W_\mathcal{T}}$ \bigotimes (A_T, W_T) satisfies LDP under Q

$$
E_Q[e^{-2\tau W_T} \mathbf{1}_a(A_T)] \asymp \underbrace{\int dw \ e^{-2\tau w} e^{-\tau J_Q(a,w)}}_{\text{Laplace integral}} \asymp e^{-\tau R_Q(a)}
$$

Main result

Action:

[Guyader & HT JSP 2020]

$$
L_T = e^{-T W_T}, \qquad W_T = -\frac{1}{T} \log L_T
$$

- \bullet loint $LDP \cdot$ $Q(A_T = a, W_T = w) \asymp e^{-T J_Q(a,w)}$
- AE criterion:

$$
\underbrace{\frac{\inf\{2w+J_Q(a,w)\}}{R_Q(a)}}_{I(a)}
$$

Theorem

Q is AE if and only if

- There exists w^* such that $J_Q(a, w^*)$
- Left w-slope of $J_Q(a, w)$ at $w^* < -2$

(Typicality condition) (Steepness condition)

Interpretation

$$
P(A_T = a) \times e^{-T I(a)}, \qquad Q(A_T = a, W_T = w) \times e^{-T J_Q(a, w)}
$$

$$
E_Q[e^{-2\mathcal{TW}_T}\mathbf{1}_a(A_T)] \asymp \int dw\ e^{-2\mathcal{TW}}\ e^{-\mathcal{T}J_Q(a,w)}
$$

- Typicality condition: $A_T \rightarrow a$ under Q
- Steepness condition: Suppress fluctuations $W_T < w^*$
- Not AE if $J_Q(a, w)$ has smooth zero

Examples (1/2)

Exponential tilting

• Action:
$$
W_T = kA_T + c
$$

Rate function:

$$
J_Q(a, w) = \begin{cases} 0 & w = ka + c \\ \infty & \text{otherwise} \end{cases}
$$

$$
S_n = \frac{1}{n} \sum_{i=1}^n X_i, \qquad X_i \sim \mathcal{N}(0, 1)
$$

•
$$
P(S_n \ge 1) \asymp e^{-nl}, l = \frac{1}{2}
$$

- $\tilde{X}_i \sim \mathcal{N}(\mu, 1)$
	- μ < 1: No zero. Not AE
	- $\mu = 1$: Zero + steep. AE
	- $\mu > 1$: Zero, not steep. Not AE

 Ω

 0.0 0.2 0.4 0.6 0.8 1.0

 $l_Q^B(w)$

Examples (2/2)

Exponential sums

$$
S_n = \frac{1}{n} \sum_{i=1}^n X_i, \qquad X_i \sim \text{Exp}(1), \qquad P(S_n \ge b) \approx e^{-nI(b)} \qquad \qquad I(b) = b - 1 - \log b
$$

- Exponential tilting: $\tilde{X}_i \sim \textsf{Exp}(1/b)$
- Partial tilting: $\tilde{X}_i \sim \textsf{Exp}(1/b)$ $i = 1, \ldots, n-1$ $\tilde{\mathsf{X}}_n \sim \mathsf{Exp}(1)$
- AE if $b \in (1, 2]$, not AE if $b > 2$.

Other examples

- Markov chains
- Diffusions
- See [Guyader & HT JSP 2020]

Other estimators

$$
\hat{P}_{T,L}(a) = \frac{1}{L} \sum_{j=1}^{L} \mathbf{1}_a(A_T^{(j)}) \qquad \longrightarrow \qquad \hat{I}_{T,L}(a) = -\frac{1}{T} \ln \hat{P}_{T,L}(a)
$$

- Estimate rate function without histograms
- Optimal running cost:

$$
I(a) = \lim_{T \to \infty} \inf_{\substack{\tilde{X}_t \\ A_T = a \text{ typical}}} \frac{1}{2T} \int_0^T [F(\tilde{X}_t) - \tilde{F}(\tilde{X}_t)]^2 dt
$$

 \bullet Optimal $\tilde{X}_t =$ driven process [Chetrite & HT JSTAT 2015]

Trade off

- Use exponential LD structure
- Good variance
- Problem: Biased if not optimal

Conclusion

- New conditions for efficient sampling of large deviations
- Can be applied beyond exponential tilting
- $J_{\Omega}(a, w)$ explains bad IS cases
- Predicts estimator convergence

Open problems

- Errors when not AE (how bad when not optimal?)
- Bias bounds for control estimators

Ongoing works (from stat phys)

- Adaptive approximations of driven process [Ferre & HT JSP 2018]
- Spectral approximations **by Carrahan** (Nottingham)]
- Machine learning approaches [E (Princeton), Limmer (Berkeley)] (Tensor net, neural net, RL)

References

A. Guyader, H. Touchette

Efficient large deviation estimation based on importance sampling J. Stat. Phys. 181, 551, 2020

R. Chetrite, H. Touchette

Nonequilibrium Markov processes conditioned on large deviations Ann. H. Poincaré 16, 2005, 2015

R. Chetrite, H. Touchette

Variational and optimal control representations of conditioned and driven processes J. Stat. Mech. 2015, P12001

appliedmaths.sun.ac.za/~htouchette

J. Bucklew Introduction to Rare Event Simulation Springer, 2004

Joint large deviations

- Observable: A_{τ}
- Action: W_T
- Joint SCGF:

$$
\lambda_Q(k,\gamma) = \lim_{T \to \infty} \frac{1}{T} \ln E_Q[e^{TkA_T + T\gamma W_T}]
$$

• Markov processes: $\lambda_Q(k,\gamma) =$ dom eigenvalue

Gärtner–Ellis Theorem

If $\lambda_{\mathcal{Q}}(k, \gamma)$ is differentiable, then

$$
J_Q(a, w) = \inf_{k, \gamma} \{ ka + \gamma w - \lambda_Q(k, \gamma) \}
$$