On Sequential Monte Carlo (SMC) strategies for Target Distributions

M. Rousset ^{1,2}

F. Cérou, A. Guyader, B. Delyon, T. Lelièvre, G. Stoltz, C.E. Bréhier, L. Goudenège, P. Héas. (PhDs: F. Ernoult, K. Tit).

1 Inria Rennes Bretagne Atlantique

2 IRMAR, Université de Rennes 1

RESIM 2021

KORKA BRADE KORA

Aim of the talk

- 'Target probability distribution': defined as a density w.r.t to a easily simulable distribution, density given up to a normalizing constant. E.g.: posterior distribution, Gibbs probability.
- \bullet SMC $=$ particle methods $=$ Importance splitting. As opposed to MCMC methods. Start with a sample of N 'particles'. Algorithms output: sample of N particles (approx. indep.) with distribution the 'target'.
- Aim of the talk: How to think about adaptivity to speed up sims. Nota Bene: Casual chat, not in papers !

E.g.: Rare event problem

- $\pi(d\mathsf{x})$ a reference probability on $\mathcal{S}\,(=\mathbb{R}^d)$ that can be exactly simulated (e.g. Gaussian, uniform).
- $\mathrm{score}: \mathbb{R}^d \to \mathbb{R}$ a given computable function.
- Assume $\pi({\text{score} > 0}) = 1$. Problem: for $s = 1$:

Estimate $p_{\mathbf{s}} := \pi(\{\text{score} > \mathbf{s}\}) \ll 1$ Simulate according to 'target' $\eta_s(d\mathsf{x}) := \pi(d\mathsf{x}|\mathop{\mathrm{score}}(\mathsf{x}) > s).$

Idea

 \int

Estimate/Simulate ' "smoothly" and sequentially' the path

 $\textit{s} \mapsto (\textit{p}_\textit{s}, \eta_\textit{s}), \quad \textit{s} \in [0, 1].$

- 1 $\frac{1}{z_0}e^{-V_0(0)}\pi(dx)$ a reference probability on $S=\mathbb{R}^d$ that can be exactly simulated (e.g. Gaussian, uniform). Choose $z_0 = 1$.
- $(\mathsf{s}, \mathsf{x}) \mapsto V_{\mathsf{s}} (\mathsf{x}) : \mathbb{R} \times \mathbb{R}^d \times \rightarrow \mathbb{R}$ a given computable function (called potential). (Optional: $\nabla_x V_s(x)$ is available).
- Problem, for $s := 1$:

Generalization

- \int Estimate the normalization: $z_s := \pi(e^{-V_s(t)})$ Simulate according to 'target': $\eta_s(dx) := \frac{1}{z_s} e^{-V_s(x)} \pi(dx)$.
- Previous rare event model is particular case for:

$$
V_s(x) = \begin{cases} +\infty & \text{if } \mathrm{score}(x) \leq s \\ 0 & \text{if } \mathrm{score}(x) > s \end{cases}
$$

KID KA KERKER E VOOR

Manifold Generalization¹

- 1 $\frac{1}{z_0}e^{-V(x,0)}\pi_0(dx)$ a target probability on $S=\mathbb{R}^d$ that can be exactly simulated (e.g. Gaussian, uniform). $z_0 = 1$.
- Target : $e^{-V_s} d\pi_s/z_s$.
- $s \mapsto \pi_s$ a path of mutually singular non-negative reference measures and a family of computable maps $i_{s,s'} : \mathbb{R}^d \rightarrow \mathbb{R}^d$ with $s, s' \in \mathbb{R}$ such that:

$$
\pi_{s'} = i_{s,s'}[\pi_s] \quad \text{(push-forward)}
$$

Example

 $\pi_{\bm{s}} := 2d' < 2d$ -dimensional phase-space volume of a parametric family of co-tangent spaces $s \mapsto \mathcal{T}^* \Sigma_s \subset \mathbb{R}^{2d}$. i_{s,s'} is a simulable symplectic projection.

¹ Lelièvre-Stoltz-Rousset, *Langevin dynamics with constraints and* computation of free energy differences, 2012**KORKA SERKER ORA**

High Dimensional Applications

- Sampling w.r.t. Gibbs distribution. Tempering: $\pi_s \propto e^{-sU(x)} \pi(dx).$
- Bayesian statistics: $\pi =$ prior distribution on model(s). $-V(s, x) =$ (smoothed) log-likelihood from $s \times n_{\text{obs}}$ datas.
- $\bullet \pi$ = physical Markovian trajectory (Thermostatted Molecular Dynamics). Score $=$ 'minimum distance' of path from a molecular configuration.

4 0 > 4 4 + 4 = > 4 = > = + + 0 4 0 +

[Context and Algo](#page-1-0) [Adaptivity and Mutations](#page-12-0) [Bias and consistency](#page-15-0) [Indexing using selection](#page-19-0) [AMS](#page-23-0) [Conclusion](#page-34-0) 00000000000 000 0000 0000 000000000 00

Sequential Monte-Carlo a.k.a. Importance Splitting

Define: $0 = s_{(0)} < \ldots < s_{(i_{\text{max}})} = 1$ a given, finite ladder of scores.

 $X_{s_{(i)}}^n$ state of particle n at iteration i .

General Form of the Algorithm with Weighted Particles:

(0) Simulate N independent particles according to $\eta_0 = \frac{1}{z_0}$ $\frac{1}{z_0}e^{-V_0}\pi$. Iterate on $i = 1 \dots i_{\text{max}}$:

- (i) Weights: update the 'importance weight' of each particle $n \in (1, N)$ by $e^{-V_{s_{(i)}}(X_{s_{(i-1)}}^n) + V_{s_{(i-1)}}(X_{s_{(i-1)}}^n)}$ (target: $e^{-V_{s_{(i)}}}\pi$).
- (i) Selection (optional) kill and/or split particles and update weights. E.g.: triggered if weights are too degenerate.
- (i) Mutation: modify ('mutate') (all or some or none) particles with Markov Chain Monte Carlo transition $\mathit{M}_{\mathsf{s}_{(i)}}(x, dx')$ that leaves invariant the target $\eta_{s_{(i)}}(d\mathrm{x}) := \frac{1}{z_{s_{(i)}}}=e^{-V\left(\mathrm{x},s_{(i)}\right)}\pi(d\mathrm{x}).$ $\eta_{s_{(i)}}(d\mathrm{x}) := \frac{1}{z_{s_{(i)}}}=e^{-V\left(\mathrm{x},s_{(i)}\right)}\pi(d\mathrm{x}).$ $\eta_{s_{(i)}}(d\mathrm{x}) := \frac{1}{z_{s_{(i)}}}=e^{-V\left(\mathrm{x},s_{(i)}\right)}\pi(d\mathrm{x}).$

Sequential Monte-Carlo a.k.a. Importance Splitting

Estimators:

Target measures $\eta_{\bm{s}}=\frac{1}{z_{\bm{s}}}$ $\frac{1}{z_s}e^{-V(x,s)}\pi(dx)$ are estimated by weighted empirical measures with normalization

$$
\eta^N_{s_{(i)}} := \sum_{n=1}^N \operatorname{Weight}_{s_{(i)}}^n \delta_{X_{s_{(i)}}^n} / \sum_{n=1}^N \operatorname{Weight}_{s_{(i)}}^n.
$$

• Normalizations are estimated by the average weights over particles

$$
z_{s_{(i)}}^N := \frac{1}{N} \sum_{n=1}^N \mathrm{Weight}_{s_{(i)}}^n
$$

4 0 > 4 4 + 4 = > 4 = > = + + 0 4 0 +

KORKA SERKER ORA

Fun Remark: Includes MCMC !

- Pick a ladder where all scores (except first) \rightarrow 1.
- NO selection, ONLY Mutations.
- GET: N MCMC with η_0 prior initial condition.

Papers:

- Del Moral Doucet Jasra Sequential Monte Carlo samplers 2006.
- A Beskos, A Jasra, N Kantas, A Thiery On the convergence of adaptive sequential Monte Carlo methods 2016
- F Cérou, P Del Moral, T Furon, A Guyader Sequential Monte Carlo for rare event estimation 2012
- **•** F Cérou, A Guyader, Adaptive Multilevel Splitting for rare event analysis, 2007.
- In Phys.: 'Jarzynski equality'
- **•** Freddy Bouchet and al..

Books

- **•** Liu Monte Carlo Strategies
- Chopin Introduction To Sequential Monte Carlo
- Doucet, Freitas, Gordon Sequential Monte Carlo in Practice

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익C*

Del Moral Feynman-Kac formula

Classification of re-sampling or selection scheme

Definition

A selection or re-sampling scheme draw branching numbers $B_n \in \mathbb{N}$, $n = 1 \dots N$ such that:

$$
\widetilde{\text{weight}}\,\mathbb{E}[\sum_{n=1}^{\tilde{N}}\delta_{\tilde{X}^n}]=\widetilde{\text{weight}}\,\mathbb{E}[\sum_{n=1}^N B^n\delta_{X^n}]=\sum_{n=1}^N\text{weight}^n\delta_{X^n}.
$$

The branching numbers define a new particle system $\tilde{X}_1, \ldots, \tilde{X}_{\tilde{N}}$ with $\tilde{N} = \sum_{n} B_{n}$ particles and common weight weight.

- $B^n \geq 1$: selection of splitting type.
- $B^n \leq 1$: selection of killing type.

 $B^n \geq 1$ and $\mathbb{E}(B_n)$ is independent on n: neutral bearing.

- A 'non-adaptive' SMC/Importance Splitting algorithm consist of: i) **preset** ladder of scores $0 = s_{(0)} < \ldots < s_{(i_{\text{max}})} = 1$, ii) **preset** choice of mutations M_s leaving targte η_s invariant.
- Many 'adaptive' variants (e.g. Adaptive Multilevel Splitting, see after) are presented as follows: the choice of the scores is random, adaptive.
- \bullet In this talk I propose the 'mindset':

Idea

Interpret 'Adaptive scores' as \rightarrow 'Triggered and/or adaptive mutations'.

'Adaptive scores' $=$ nothing happens for many scores because of adaptivity of the triggering of mutations.

Adaptive and Triggered Mutations

Consider the mutation M_s after the selection step in the algo. Vocabulary:

- **Preset Mutations**: M_s is preset, applied to all particles at each score \rightarrow non-adaptive, 'Feynman-Kac-Del Moral structure'.
- **Adaptive Mutations**: The mutation kernel M_s is random and depends on the past particle empirical distribution. E.g.: if M_s is based on accept/reject, proposal is adaptively tuned to target an average acceptance rate $r_0 \in (0, 1)$.
- (Triggered) Mutations-If-Selection: A mutation kernel M_s is applied only when selection step is triggered.
- (Triggered) Mutations-On-Child: A mutation kernel M_s applied only to children when a neutral bearing selection is triggered.

KORKA BRADE KORA

[Context and Algo](#page-1-0) [Adaptivity and Mutations](#page-12-0) [Bias and consistency](#page-15-0) [Indexing using selection](#page-19-0) [AMS](#page-23-0) [Conclusion](#page-34-0) 00000000000 000 0000 00000000000 00

Adaptive and Triggered Mutations

Example (Mutations-If-Selection)

- Compute the relative variance (Effective Sample Size) of weights at each score/iteration.
- If relative variance greater than a treshhold: trigger selection.
- If selection has been triggered, mutations on all particles are triggered.

Example (Mutations-On-Child)

- Special case of Mutations-If-Selection.
- Resampling/selection is split in two parts: i) re-sample/select according to the weights BUT so that final sample size $N - K < N$. ii) K new particles are added by independent picking of particles (neutral bearing).
- Triggered mutations are applied on the [K](#page-12-0) [chi](#page-14-0)[l](#page-12-0)[dre](#page-13-0)[n](#page-14-0)[in](#page-12-0) [ii](#page-15-0)[\)](#page-11-0) [O](#page-14-0)[N](#page-15-0)[L](#page-0-0)[Y.](#page-35-0)

Adaptive/Triggered Mutation variant

Remarks

- Triggered Mutations is a kind of adaptivity.
- The goal of Triggered Mutations (If-Selection, On-Child) is to save computational power by avoiding mutations (hence evaluation of V or ∇V) if simple weighting is sufficient.
- Consistency of Adaptive mutations: large sample $N \rightarrow +\infty$.
- Well-known rare event case: Adaptive Multilevel Splitting (AMS) algorithm (see after).
- AMS in the dynamical setting has a hidden non-adaptive Feynman-Kac-Del Moral structure (see below).

[Context and Algo](#page-1-0) [Adaptivity and Mutations](#page-12-0) [Bias and consistency](#page-15-0) [Indexing using selection](#page-19-0) [AMS](#page-23-0) [Conclusion](#page-34-0) 00000000000 000 \bullet 000 0000 00000000000 00

The Feynman-Kac-Del Moral structure

• For non-adaptive $=$ preset mutations, the algorithm can be derived from a Feynman-Kac formula:

$$
\int \varphi(x) e^{-V_{s_{(i)}}(x)} \pi(dx) =
$$
\n
$$
\mathbb{E}\bigg[\varphi(X_{s_{(i)}}) e^{-\sum_{i'=1}^{i} V_{s_{(i')}}(X_{s_{(i'-1)}}) - V_{s_{(i'-1)}}(X_{s_{(i'-1)}})}\bigg]
$$

where $\mathcal{X}_{\mathsf{s}_{(i)}},\,i\geqslant 0$ is a Markov chain with $\mathcal{X}_0\sim\eta_0$ and probability transition $M_{s_{(i)}}$.

- The algoritm is then: simulating independently N chains with weights. Additional re-sampling/selection to prevent weight degeneracy.
- Nota Bene: in Del Moral, re-sampling/selection is put in a (very slightly restrictive) 'mean-field' form.

Jarzynski equality

Remark

The Feynman-Kac formula before is known in physics as 'Jarzynski equality'. In that case:

- s is reaction coordinate or a thermodynamic parameter.
- Target is a canonical Gibbs distribution (mechanical system thermostatted).
- Mutation is Newton dynamics with parameter $s + r$ random perturbation at given temperature (Langevin).

KORKA SERKER STRACK

- $Weight = e^{-Work/(k_bT)}$!!
- Exists experimentally !!

The Feynman-Kac-Del Moral structure

Proposition (Unbiasedness)

Un-normalized estimators are unbiased for algorithms following the Feynman-Kac-Del Moral structure.

Proof.

First remark that $\int \varphi \, {\text{e}}^{-V_{S_{(i)}}} d\pi = \mathbb{E}[\varphi(X_{S_{(i)}}) {\text{e}}^{-V_{S_{(i)}}(X_{S_{(i-1)}}) + V_{S_{(i-1)}}(X_{S_{(i-1)}})} \times \ldots \times$ ${\rm e}^{-\mathcal{V}_{\mathsf{s}(\mathsf{1})}(X_{\mathsf{s}(\mathsf{0})})+\mathcal{V}_{\mathsf{s}(\mathsf{0})}(X_{\mathsf{s}(\mathsf{0})})}$] $=:\mathbb{E}[Q^{0\to i}(\varphi)(X_0)]$ where $i\mapsto \mathcal{X}_{(i)}$ is the MCMC chain used in the mutation step. Then check that for $i \leq i_0$

$$
i \mapsto z_{s^{(i)}}^N \int Q^{i \to i^0}(\varphi) \, d\eta_{s^{(i)}}^N
$$
 is a martingale.

െ പ (ロ) (何) (ミ) (ミ)

Consistency² when $N \rightarrow +\infty$

Proposition (Asymptotic Unbiasedness)

Consider any algorithm with adptive features continuous w.r.t involved estimators. In the large sample size limit $N \rightarrow +\infty$, for each i,

$$
\big(z_{s_{(i)}}^N, \eta_{s_{(i)}}^N\big) \xrightarrow[N \to +\infty]{\mathbb{P}} \big(z_{s_{(i)}}, \eta_{s_{(i)}}\big)
$$

Proof–(has to be made generically).

By induction $i \rightarrow i + 1$.

 $2A$ Beskos, A Jasra, N Kantas, A Thiery On the convergence of adaptive sequential Monte Carlo methods 2016**K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 이익단**

High dimension requires scarse mutations

• High Dimension $d \gg 1$: weights that are \times by ${\rm e}^{-V_{\mathsf{s}_{(i+1)}}(X_{\mathsf{s}_{(i)}}) + V_{\mathsf{s}_{(i)}}(X_{\mathsf{s}_{(i)}})}$ at each iteration have exponential variance with d (typically).

Example

In \mathbb{R}^d , if coordinates of X are i.i.d. and V has a sum form over coordinates and is smooth w.r.t. s, by CLT, non-degeneracy of weights requires:

$$
s^{(i+1)} - s^{(i)} \sim \frac{1}{\sqrt{d}} \xrightarrow{d \to +\infty} 0.
$$

- Tempting to not mutate at each $s^{(i)}$.
- Idea: switch to a continuum of scores:

$$
s \in \left\{s^{(0)}, \ldots, s^{(I)}\right\} \quad \text{ becomes } \quad s \in [0,1].
$$

Indexing the algorithm by selection events

'Same' algorithm, new representation:

• Non-Triggered Mutations: Each particles evolve independently according to a Markov process with generator L_s invariant with respect to target $\eta_s \propto e^{-V_s}\pi$.

Example

Piecewise constant Markov jump process

$$
L_{s}(\varphi)(x) = \lambda_{s}(M_{s}(\varphi)(x) - \varphi(x)), \quad \eta_{s}M_{s} = \eta_{s}
$$

can be simulated: i) mutations occur at random score (higher than s_0 with proba $\mathrm{e}^{-\int_0^{s_0}\lambda_s ds}),$ ii) mutations with $M_s.$

Other examples: discretization of a Stochastic Differential Equation, or Piecewise Deterministic Markov Process.

Re-Indexing the algorithm by splitting events

Initialize particles and set $S_{(0)} = 0$. Mutate all particles with L_s on $s \in [0,1]$. Iterate on j:

- (j) Weights: compute the 'importance' weight for $s \in [0,1]$ of particles so that it targets η_s for each s, e.g.: $e^{-\int_0^s \partial_{s'} V_{s'}(X_{s'})ds'}$.
- (i) Selection Compute the next random score

$$
S_{(j)}:=\inf\left\{s\geqslant S_{(j-1)}|\text{Criteria}_s^N==1\right\}
$$

e.g.: Criteria_s = weight degeneracy (Effective Sample Size) at s.

- Then perform selection/re-sampling according to weights. (j) Triggered Mutations: additional Mutations-If-Selection with $\tilde{M}_{S_{(j)}}$ (option: On-Child, Adaptive).
- (j) Preset Mutations: mutate with $L_{\pmb{s}}$ on $\pmb{s} \in [\pmb{S}^{(j)},1]$ new $(\Leftrightarrow$ all !) particles.

KORKAR KERKER EL VOLO

(Exit) Stop if $S^{(j)} = 1$ else $j \rightarrow j + 1$.

Re-Indexing the algorithm by splitting events

Remarks

- Preset mutations are simulated by ANTICIPATION (can be adjusted to decrease cost).
- Mutations with L_s can be adaptive BUT adaptivity must NOT depend on ANTICIPATION.
- Unbiasedness/Feynman-Kac/Del Moral structure^a holds if i) L^s non-adaptive, ii) no Triggered-Mutation .
- AMS in 'static setting' is an example with ONLY Triggered Mutations-On-Child (see after).
- AMS in 'dynamic setting' is an example with PSEUDO-triggered Mutation-On-Child: they are in fact anticipated preset mutations, (see after).

^aSee also Brehier Gazeau Goudenege Lelievre Rousset GAMS 2016

Let $k < N$ given. Assume rare event setting with:

- $\bullet \pi := \text{anything similar}$ simulable.
- $e^{-V_s} = \mathbf{1}_{\text{score} > s}.$
- $\mathsf{L}_{\mathsf{s}} = 0$, only triggered mutations.
- Selection $=$ killing $+$ neutral bearing. Triggered by k particles with lowest score which are killed and then neutrally borne.
- Mutation-If-Selection with Mutation-On-Child. \tilde{M}_s is a MCMC kernel reversible w.r.t. π with rejection if proposal has score \leqslant s.

³F Cérou, P Del Moral, T Furon, A Guyader Sequential Monte Carlo for rare event estimation 2012K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익C*

Dynamical⁴ AMS algorithm

- $\bullet \pi$ = Law of a Markov chain / process.
- $\mathrm{e}^{-V_s} = \mathbf{1}_{\mathsf{score} > s}, \: \mathsf{score} = \mathsf{max}(\xi(\mathsf{path})).$
- L_s = generator of π starting from first hitting time of $\{\xi > s\}$. N.B.: do nothing if score not attained.
- Selection $=$ killing $+$ neutral bearing. Triggered by k particle killed.
- Preset mutation of all particles with L_s . Mutations of old particles already simulated by ANTICIPATION.

⁴F Cérou, A Guyader, Adaptive multilevel splittin[g f](#page-23-0)[or r](#page-25-0)[a](#page-23-0)[re](#page-24-0) [e](#page-25-0)[ve](#page-22-0)[n](#page-22-0)[t](#page-33-0) [a](#page-34-0)na[ly](#page-33-0)[si](#page-34-0)[s](#page-0-0) \equiv QQ

B

イロメ イ部メ イ君メ イ君メ

ă

 2990

Adaptive Multilevel Splitting

 $-$ Black line: { ξ = constant}.

B

K ロ ▶ K 個 ▶ K 할 > K 할 > 1 할 > 1 이익어

Consistency of static AMS for large mixing

Proposition (Asymptotic Unbiasedness)

Let N be the number of particles be finite and fixed. Assume the mutation kernels associated with Triggered Mutations becomes infinitely mixing that is $\mathit{M_{s}}\rightarrow\eta_{s}$, then un-normalized estimators becomes unbiased.

Proof–(To be detailed).

Triggered mutations becomes preset mutations given by 'exact target after killing' !! This limit is called the 'idealized case' in the literature^a. The limit has to be done (e.g. by a coupling argument between M and η)!

^aCE Bréhier, T Lelièvre, M Rousset Analysis of adaptive multilevel splitting algorithms in an idealized case 2015

Classification of SMC for 'target' distributions

- Usual obstruction to unbiasedness / Feynman-Kac-Del Moral structure:
	- (Mean-Field) Adaptive Mutation. E.g.: adaptive tuning of rejection rate in Metropolis.
	- Triggered Mutation: Mutation-If-Selection and its special case Mutation-On-Child.

K ロ X K 레 X K 회 X X 회 X 및 X X X X X 전

- Algorithms can be indexed either by i) discrete increasing scores $s_{(i)}$, ii) scores associated with effective selection events $.S_{(j)} \dots$
- Algorithms indexed by effective selection events may exhibit pseudo-adpativity, like dynamic AMS.

Unbiasing any algorithm

In practice using BOTH (biased) adaptive/triggered mutations AND an unbiased Feynman-Kac-Del Moral version is useful for control:

- Run the adaptive version, store the adaptive parameters.
- Dilute the Triggered Mutations into a schedule of Preset Mutations.

KORKA BRADE KORA

• Run the unbiased variant.