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Aim of the talk

@ 'Target probability distribution’: defined as a density w.r.t
to a easily simulable distribution, density given up to a
normalizing constant. E.g.: posterior distribution, Gibbs
probability.

@ SMC = particle methods= Importance splitting. As
opposed to MCMC methods. Start with a sample of N
'particles’. Algorithms output: sample of N particles (approx.
indep.) with distribution the "target’.

@ Aim of the talk: How to think about adaptivity to speed up
sims. Nota Bene: Casual chat, not in papers !
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E.g.: Rare event problem

o 7(dx) a reference probability on S (= RY) that can be exactly
simulated (e.g. Gaussian, uniform).

e score : RY — R a given computable function.

@ Assume m({score > 0}) = 1. Problem: for s = 1:

Estimate ps := 7({score > s}) <« 1
Simulate according to 'target’ 7s(dx) := w(dx|score(x) > s).

Estimate/Simulate * "smoothly” and sequentially’ the path

s+— (ps,ms), se€[0,1].
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Generalization

(©)7(dx) a reference probability on S = R? that can be
exactly simulated (e.g. Gaussian, uniform). Choose zp = 1.

o (s,x) = Vi(x) : R x RYx — R a given computable function
(called potential). (Optional: V, Vs(x) is available).

e Problem, for s :=1:

Estimate the normalization:  z, := 7(e~¥+0)
Simulate according to 'target’: 7s(dx) := fe~ Vs x(dx).

_Zs

@ Previous rare event model is particular case for:

Va(x) +oo if score(x) <'s
s\X) =
0 if score(x) > s
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Manifold Generalization?

o se V(xOmy(dx) a target probability on S = R? that can be
exactly simulated (e.g. Gaussian, uniform). zp = 1.

o Target : e~ Vodns/zs.

@ s+ ms a path of mutually singular non-negative reference
measures and a family of computable maps is & : RY — RY
with s, s’ € R such that:

Ty = Isg[ms] (push-forward)

ms := 2d’ < 2d-dimensional phase-space volume of a parametric
family of co-tangent spaces s — T*¥s C R?9. is,s is a simulable
symplectic projection.

Lelievre-Stoltz-Rousset, Langevin dynamics with constraints and
computation of free energy differences, 2012
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High Dimensional Applications

@ Sampling w.r.t. Gibbs distribution. Tempering:
s oc e SUX)r(dx).
e Bayesian statistics: 7 = prior distribution on model(s).
—V/(s,x) = (smoothed) log-likelihood from s x ngps datas.
e 7 = physical Markovian trajectory (Thermostatted Molecular

Dynamics). Score = 'minimum distance’ of path from a
molecular configuration.
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Sequential Monte-Carlo a.k.a. Importance Splitting

Define: 0 = sg) < ... < 5(j,.,) = 1 a given, finite ladder of scores.

Xs’(”_) state of particle n at iteration i.

General Form of the Algorithm with Weighted Particles:

(0) Simulate N independent particles according to 7y = %e*‘/ow :

Iterate on i = 1. .. ipax:

(/) Weights: update the 'importance weight' of each particle
n€ (1, N) by e 0 OG0 Vom0 O ) (target: e 7).

(i) Selection (optional) kill and/or split particles and update
weights. E.g.: triggered if weights are too degenerate.

(/) Mutation: modify (‘mutate’) (all or some or none) particles
with Markov Chain Monte Carlo transition Ms, (x, dx’) that

leaves invariant the target 75, (dx) := Zie_v(x’s("))ﬂ(dx).
()
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Sequential Monte-Carlo a.k.a. Importance Splitting

Estimators:

o Target measures 1s = zise*V(X’s)ﬂ(dx) are estimated by
weighted empirical measures with normalization

ZWelght 6Xn /ZWelghts()
n=1

@ Normalizations are estimated by the average weights over
particles

Z Welghts( )
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Fun Remark: Includes MCMC !

@ Pick a ladder where all scores (except first) — 1.
@ NO selection, ONLY Mutations.
e GET: N MCMC with ng prior initial condition.
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Basic Refs

Papers:
@ Del Moral Doucet Jasra Sequential Monte Carlo samplers
2006.
@ A Beskos, A Jasra, N Kantas, A Thiery On the convergence of
adaptive sequential Monte Carlo methods 2016
@ F Cérou, P Del Moral, T Furon, A Guyader Sequential Monte
Carlo for rare event estimation 2012
o F Cérou, A Guyader, Adaptive Multilevel Splitting for rare
event analysis, 2007.
@ In Phys.: "Jarzynski equality’
@ Freddy Bouchet and al..
Books
e Liu Monte Carlo Strategies
@ Chopin Introduction To Sequential Monte Carlo
@ Doucet, Freitas, Gordon Sequential Monte Carlo in Practice
@ Del Moral Feynman-Kac formula
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Classification of re-sampling or selection scheme

A selection or re-sampling scheme draw branching numbers
B, €N, n=1...N such that:

N N N
weight B[ ~ dg,] = weight E[) ~ B"0xn] = ) _ weight"dxn.

n=1 n=1 n=1

3

The branching numbers define a new particle system Xy, . . ., fy

—_—~—

with N = >, Bn particles and common weight weight.
@ B" > 1 : selection of splitting type.

@ B" < 1 : selection of killing type.
=

e B" > 1 and E(B,) is independent on n: neutral bearing.
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What is 'adaptivity ?

@ A 'non-adaptive’ SMC/Importance Splitting algorithm consist
of: i) preset ladder of scores 0 = so) < ... < 5(j,...) = 1, ii)

preset choice of mutations M; leaving targte 75 invariant.

e Many 'adaptive’ variants (e.g. Adaptive Multilevel Splitting,
see after) are presented as follows: the choice of the scores is
random, adaptive.

@ In this talk | propose the 'mindset’:

Interpret ' Adaptive scores’ as — 'Triggered and/or adaptive
mutations’.

'Adaptive scores’ = nothing happens for many scores because of
adaptivity of the triggering of mutations.
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Adaptive and Triggered Mutations

Consider the mutation M; after the selection step in the algo.
Vocabulary:

@ Preset Mutations: M, is preset, applied to all particles at
each score — non-adaptive, 'Feynman-Kac-Del Moral
structure’.

o Adaptive Mutations: The mutation kernel M; is random and
depends on the past particle empirical distribution. E.g.: if M;
is based on accept/reject, proposal is adaptively tuned to
target an average acceptance rate rp € (0,1).

o (Triggered) Mutations-If-Selection: A mutation kernel M
is applied only when selection step is triggered.

o (Triggered) Mutations-On-Child: A mutation kernel M
applied only to children when a neutral bearing selection is
triggered.
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Adaptive and Triggered Mutations

Example (Mutations-If-Selection)

e Compute the relative variance (Effective Sample Size) of
weights at each score/iteration.

@ [f relative variance greater than a treshhold: trigger selection.

o If selection has been triggered, mutations on all particles are
triggered.

Example (Mutations-On-Child)
@ Special case of Mutations-If-Selection.

e Resampling/selection is split in two parts: i) re-sample/select
according to the weights BUT so that final sample size
N — K < N. ii) K new particles are added by independent
picking of particles (neutral bearing).

e Triggered mutations are applied on the K children in ii) ONLY.
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Adaptive/Triggered Mutation variant

o Triggered Mutations is a kind of adaptivity.

@ The goal of Triggered Mutations (If-Selection, On-Child) is to
save computational power by avoiding mutations (hence
evaluation of V. or VV' ) if simple weighting is sufficient.

e Consistency of Adaptive mutations: large sample N — +oc.

o Well-known rare event case: Adaptive Multilevel Splitting
(AMS) algorithm (see after).

o AMS in the dynamical setting has a hidden non-adaptive
Feynman-Kac-Del Moral structure (see below).




Bias and consistency
©000

The Feynman-Kac-Del Moral structure

@ For non-adaptive = preset mutations, the algorithm can be
derived from a Feynman-Kac formula:

E [SO(Xsm Yo 2ir=1 Vi D) Ve ()

where Xs(,-), i > 0 is a Markov chain with Xy ~ 19 and
probability transition M.

@ The algoritm is then: simulating independently N chains with
weights. Additional re-sampling/selection to prevent weight
degeneracy.

@ Nota Bene: in Del Moral, re-sampling/selection is put in a
(very slightly restrictive) 'mean-field’ form.
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Jarzynski equality

The Feynman-Kac formula before is known in physics as 'Jarzynski
equality’. In that case:

@ s is reaction coordinate or a thermodynamic parameter.

o Target is a canonical Gibbs distribution (mechanical system
thermostatted).

e Mutation is Newton dynamics with parameter s + random
perturbation at given temperature (Langevin).

o Weight = e¢=Werk/(koT)

e Exists experimentally !!
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The Feynman-Kac-Del Moral structure

Proposition (Unbiasedness)

Un-normalized estimators are unbiased for algorithms following the
Feynman-Kac-Del Moral structure.

Proof.

First remark that

J e Y0 dr = Elp(Xs,))e 0 o)V Kon)

e o 50t Voo X0 = B[Q0(0)(Xo)] where i > X(;) is the
MCMC chain used in the mutation step. Then check that for i < iy

| A

, 10 : .
i~ zsN(,-) / Q" (v) dné\(’,—) is a martingale.

N
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Consistency? when N — 400

Proposition (Asymptotic Unbiasedness)

Consider any algorithm with adptive features continuous w.r.t
involved estimators. In the large sample size limit N — +oo, for
each i,

N N P
(Zs(,-)7775(-)) —_— (ZS(,-)7775(,-))

Proof—(has to be made generically).

By induction i — / + 1. Ol

2A Beskos, A Jasra, N Kantas, A Thiery On the convergence of adaptive
sequential Monte Carlo methods 2016
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High dimension requires scarse mutations

@ High Dimension d > 1: weights that are x by
e Ve Ko T Ve (X)) 3t each iteration have exponential
variance with d (typically).

SEE

In R, if coordinates of X are i.i.d. and V has a sum form over
coordinates and is smooth w.r.t. s, by CLT, non-degeneracy of
weights requires:

i) _ ) L doteo o

@ Tempting to not mutate at each s(.
o |dea: switch to a continuum of scores:

56{5(0),...,5(’)} becomes s € [0,1].
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Indexing the algorithm by selection events

'Same’ algorithm, new representation:
e Non-Triggered Mutations: Each particles evolve
independently according to a Markov process with generator
L, invariant with respect to target ns oc e~ Y57,

Example
Piecewise constant Markov jump process

Ls(p)(x) = As(Ms(#)(x) = (x)), - msMs = ns

can be simulated: i) mutations occur at random score (higher than
so with proba e~ Jo” 295 ii) mutations with Ms.

@ Other examples: discretization of a Stochastic Differential
Equation, or Piecewise Deterministic Markov Process.
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Re-Indexing the algorithm by splitting events

Initialize particles and set Sg) = 0. Mutate all particles with Ls on

s € [0,1]. Iterate on j:

() Weights: compute the 'importance’ weight for s € [0, 1] of
particles so that it targets 7 for each s, e.g.: e~ Jg e Vi (X )ds”,

(j) Selection Compute the next random score

S(j) i= inf {5 > S(J'_l)‘CriteriaéV == }

e.g.: Criteriag = weight degeneracy (Effective Sample Size) at
s.

Then perform selection/re-sampling according to weights.
(j) Triggered Mutations: additional Mutations-If-Selection with
MSU) (option: On-Child, Adaptive).
(j) Preset Mutations: mutate with Ls on s € [SU) 1] new (&
all 1) particles.
(Exit) Stop if SU) =1 else j — j + 1.
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Re-Indexing the algorithm by splitting events

@ Preset mutations are simulated by ANTICIPATION (can be
adjusted to decrease cost).

@ Mutations with Ls can be adaptive BUT adaptivity must NOT
depend on ANTICIPATION.

e Unbiasedness/Feynman-Kac/Del Moral structure® holds if i)
Ls non-adaptive, ii) no Triggered-Mutation .

o AMS in 'static setting’ is an example with ONLY Triggered
Mutations-On-Child (see after).

e AMS in ‘dynamic setting’ is an example with
PSEUDO-triggered Mutation-On-Child: they are in fact
anticipated preset mutations, (see after).

“See also Brehier Gazeau Goudenege Lelievre Rousset GAMS 2016
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Static® AMS algorithm

Let k < N given. Assume rare event setting with:
e 7 := anything simulable.
0 e V= Lscore>s-
e Ls =0, only triggered mutations.

@ Selection = killing + neutral bearing. Triggered by k particles
with lowest score which are killed and then neutrally borne.

e Mutation-If-Selection with Mutation-On-Child. M; is a MCMC

kernel reversible w.r.t. ™ with rejection if proposal has score
< s.

3F Cérou, P Del Moral, T Furon, A Guyader Sequential Monte Carlo for
rare event estimation 2012
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Dynamical* AMS algorithm

e 7 = Law of a Markov chain / process.

0 ¢ = loress, score = max(&(path)).
o L, = generator of 7 starting from first hitting time of

{¢ > s}. N.B.: do nothing if score not attained.

@ Selection = killing + neutral bearing. Triggered by k particle
killed.

@ Preset mutation of all particles with L;. Mutations of old
particles already simulated by ANTICIPATION.

*F Cérou, A Guyader, Adaptive multilevel splitting for rare event analysis
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Adaptive Multilevel Splitting

— Black line: {{ = constant}.
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Adaptive Multilevel Splitting
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Adaptive Multilevel Splitting



Adaptive Multilevel Splitting



AMS
000000@0000

Adaptive Multilevel Splitting
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Adaptive Multilevel Splitting




Adaptive Multilevel Splitting
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Adaptive Multilevel Splitting
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Consistency of static AMS for large mixing

Proposition (Asymptotic Unbiasedness)

Let N be the number of particles be finite and fixed. Assume the
mutation kernels associated with Triggered Mutations becomes
infinitely mixing that is Ms — ns, then un-normalized estimators
becomes unbiased.

Proof—(To be detailed).

Triggered mutations becomes preset mutations given by 'exact
target after killing’ ! This limit is called the 'idealized case’ in the
literature?. The limit has to be done (e.g. by a coupling argument
between M and n) ! O

?CE Bréhier, T Leliévre, M Rousset Analysis of adaptive multilevel splitting
algorithms in an idealized case 2015
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Classification of SMC for 'target’ distributions

@ Usual obstruction to unbiasedness / Feynman-Kac-Del Moral
structure:
o (Mean-Field) Adaptive Mutation. E.g.: adaptive tuning of
rejection rate in Metropolis.
e Triggered Mutation: Mutation-If-Selection and its special case
Mutation-On-Child.

@ Algorithms can be indexed either by i) discrete increasing
scores s(j), ii) scores associated with effective selection events

@ Algorithms indexed by effective selection events may exhibit
pseudo-adpativity, like dynamic AMS.
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Unbiasing any algorithm

In practice using BOTH (biased) adaptive/triggered mutations
AND an unbiased Feynman-Kac-Del Moral version is useful for
control:

@ Run the adaptive version, store the adaptive parameters.

@ Dilute the Triggered Mutations into a schedule of Preset
Mutations.

@ Run the unbiased variant.
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