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Aim of the talk

’Target probability distribution’: defined as a density w.r.t
to a easily simulable distribution, density given up to a
normalizing constant. E.g.: posterior distribution, Gibbs
probability.
SMC = particle methods= Importance splitting. As
opposed to MCMC methods. Start with a sample of N
’particles’. Algorithms output: sample of N particles (approx.
indep.) with distribution the ’target’.
Aim of the talk: How to think about adaptivity to speed up
sims. Nota Bene: Casual chat, not in papers !
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E.g.: Rare event problem

π(dx) a reference probability on S (= Rd) that can be exactly
simulated (e.g. Gaussian, uniform).
score : Rd → R a given computable function.
Assume π({score > 0}) = 1. Problem: for s = 1:{

Estimate ps := π({score > s})� 1
Simulate according to ’target’ ηs(dx) := π(dx | score(x) > s).

Idea
Estimate/Simulate ’ ”smoothly” and sequentially’ the path

s 7→ (ps , ηs), s ∈ [0, 1].



Context and Algo Adaptivity and Mutations Bias and consistency Indexing using selection AMS Conclusion

Generalization

1
z0

e−V0(0)π(dx) a reference probability on S = Rd that can be
exactly simulated (e.g. Gaussian, uniform). Choose z0 = 1.
(s, x) 7→ Vs(x) : R× Rd× → R a given computable function
(called potential). (Optional: ∇xVs(x) is available).
Problem, for s := 1:{

Estimate the normalization: zs := π(e−Vs())

Simulate according to ’target’: ηs(dx) := 1
zs

e−Vs(x)π(dx).

Previous rare event model is particular case for:

Vs(x) =

{
+∞ if score(x) 6 s

0 if score(x) > s
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Manifold Generalization1

1
z0

e−V (x ,0)π0(dx) a target probability on S = Rd that can be
exactly simulated (e.g. Gaussian, uniform). z0 = 1.
Target : e−Vsdπs/zs .
s 7→ πs a path of mutually singular non-negative reference
measures and a family of computable maps is,s′ : Rd → Rd

with s, s ′ ∈ R such that:

πs′ = is,s′ [πs ] (push-forward)

Example

πs := 2d ′ < 2d-dimensional phase-space volume of a parametric
family of co-tangent spaces s 7→ T ∗Σs ⊂ R2d . is,s′ is a simulable
symplectic projection.

1Lelièvre-Stoltz-Rousset, Langevin dynamics with constraints and
computation of free energy differences, 2012
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High Dimensional Applications

Sampling w.r.t. Gibbs distribution. Tempering:
πs ∝ e−sU(x)π(dx).
Bayesian statistics: π = prior distribution on model(s).
−V (s, x) = (smoothed) log-likelihood from s × nobs datas.
π = physical Markovian trajectory (Thermostatted Molecular
Dynamics). Score = ’minimum distance’ of path from a
molecular configuration.



Context and Algo Adaptivity and Mutations Bias and consistency Indexing using selection AMS Conclusion

Sequential Monte-Carlo a.k.a. Importance Splitting

Define: 0 = s(0) < . . . < s(imax) = 1 a given, finite ladder of scores.

X n
s(i)

state of particle n at iteration i .

General Form of the Algorithm with Weighted Particles:

(0) Simulate N independent particles according to η0 = 1
z0

e−V0π .
Iterate on i = 1 . . . imax:
(i) Weights: update the ’importance weight’ of each particle

n ∈ (1,N) by e
−Vs(i)

(X n
s(i−1)

)+Vs(i−1) (X
n
s(i−1)

)
(target: e−Vs(i)π).

(i) Selection (optional) kill and/or split particles and update
weights. E.g.: triggered if weights are too degenerate.

(i) Mutation: modify (’mutate’) (all or some or none) particles
with Markov Chain Monte Carlo transition Ms(i)(x , dx

′) that
leaves invariant the target ηs(i)(dx) := 1

zs(i)
e−V (x ,s(i))π(dx).
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Sequential Monte-Carlo a.k.a. Importance Splitting

Estimators:
Target measures ηs = 1

zs
e−V (x ,s)π(dx) are estimated by

weighted empirical measures with normalization

ηNs(i) :=
N∑

n=1

Weightns(i)δX n
s(i)
/

N∑
n=1

Weightns(i) .

Normalizations are estimated by the average weights over
particles

zNs(i) :=
1
N

N∑
n=1

Weightns(i)
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Fun Remark: Includes MCMC !

Pick a ladder where all scores (except first) → 1.
NO selection, ONLY Mutations.
GET: N MCMC with η0 prior initial condition.
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Basic Refs

Papers:
Del Moral Doucet Jasra Sequential Monte Carlo samplers
2006.
A Beskos, A Jasra, N Kantas, A Thiery On the convergence of
adaptive sequential Monte Carlo methods 2016
F Cérou, P Del Moral, T Furon, A Guyader Sequential Monte
Carlo for rare event estimation 2012
F Cérou, A Guyader, Adaptive Multilevel Splitting for rare
event analysis, 2007.
In Phys.: ’Jarzynski equality’
Freddy Bouchet and al..

Books
Liu Monte Carlo Strategies
Chopin Introduction To Sequential Monte Carlo
Doucet, Freitas, Gordon Sequential Monte Carlo in Practice
Del Moral Feynman-Kac formula
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Classification of re-sampling or selection scheme

Definition
A selection or re-sampling scheme draw branching numbers
Bn ∈ N, n = 1 . . .N such that:

w̃eightE[
Ñ∑

n=1

δX̃ n ] = w̃eightE[
N∑

n=1

BnδX n ] =
N∑

n=1

weightnδX n .

The branching numbers define a new particle system X̃1, . . . , X̃Ñ

with Ñ =
∑

n Bn particles and common weight w̃eight.
Bn > 1 : selection of splitting type.
Bn 6 1 : selection of killing type.
Bn > 1 and E(Bn) is independent on n: neutral bearing.
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What is ’adaptivity’ ?

A ’non-adaptive’ SMC/Importance Splitting algorithm consist
of: i) preset ladder of scores 0 = s(0) < . . . < s(imax) = 1, ii)
preset choice of mutations Ms leaving targte ηs invariant.
Many ’adaptive’ variants (e.g. Adaptive Multilevel Splitting,
see after) are presented as follows: the choice of the scores is
random, adaptive.
In this talk I propose the ’mindset’:

Idea
Interpret ’Adaptive scores’ as → ’Triggered and/or adaptive
mutations’.

’Adaptive scores’ = nothing happens for many scores because of
adaptivity of the triggering of mutations.
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Adaptive and Triggered Mutations

Consider the mutation Ms after the selection step in the algo.
Vocabulary:

Preset Mutations: Ms is preset, applied to all particles at
each score → non-adaptive, ’Feynman-Kac-Del Moral
structure’.
Adaptive Mutations: The mutation kernel Ms is random and
depends on the past particle empirical distribution. E.g.: if Ms

is based on accept/reject, proposal is adaptively tuned to
target an average acceptance rate r0 ∈ (0, 1).
(Triggered) Mutations-If-Selection: A mutation kernel Ms

is applied only when selection step is triggered.
(Triggered) Mutations-On-Child: A mutation kernel Ms

applied only to children when a neutral bearing selection is
triggered.
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Adaptive and Triggered Mutations

Example (Mutations-If-Selection)

Compute the relative variance (Effective Sample Size) of
weights at each score/iteration.
If relative variance greater than a treshhold: trigger selection.
If selection has been triggered, mutations on all particles are
triggered.

Example (Mutations-On-Child)

Special case of Mutations-If-Selection.
Resampling/selection is split in two parts: i) re-sample/select
according to the weights BUT so that final sample size
N − K < N. ii) K new particles are added by independent
picking of particles (neutral bearing).
Triggered mutations are applied on the K children in ii) ONLY.
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Adaptive/Triggered Mutation variant

Remarks
Triggered Mutations is a kind of adaptivity.
The goal of Triggered Mutations (If-Selection, On-Child) is to
save computational power by avoiding mutations (hence
evaluation of V or ∇V ) if simple weighting is sufficient.
Consistency of Adaptive mutations: large sample N → +∞.
Well-known rare event case: Adaptive Multilevel Splitting
(AMS) algorithm (see after).
AMS in the dynamical setting has a hidden non-adaptive
Feynman-Kac-Del Moral structure (see below).
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The Feynman-Kac-Del Moral structure

For non-adaptive = preset mutations, the algorithm can be
derived from a Feynman-Kac formula:∫

ϕ(x)e−Vs(i)
(x)
π(dx) =

E
[
ϕ(Xs(i))e

−
∑i

i′=1 Vs(i′) (Xs(i′−1)
)−Vs(i′−1)

(Xs(i′−1)
)
]

where Xs(i) , i > 0 is a Markov chain with X0 ∼ η0 and
probability transition Ms(i) .
The algoritm is then: simulating independently N chains with
weights. Additional re-sampling/selection to prevent weight
degeneracy.
Nota Bene: in Del Moral, re-sampling/selection is put in a
(very slightly restrictive) ’mean-field’ form.
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Jarzynski equality

Remark
The Feynman-Kac formula before is known in physics as ’Jarzynski
equality’. In that case:

s is reaction coordinate or a thermodynamic parameter.
Target is a canonical Gibbs distribution (mechanical system
thermostatted).
Mutation is Newton dynamics with parameter s + random
perturbation at given temperature (Langevin).
Weight = e−Work/(kbT ) !!
Exists experimentally !!
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The Feynman-Kac-Del Moral structure

Proposition (Unbiasedness)

Un-normalized estimators are unbiased for algorithms following the
Feynman-Kac-Del Moral structure.

Proof.
First remark that∫
ϕ e−Vs(i)dπ = E[ϕ(Xs(i))e

−Vs(i)
(Xs(i−1) )+Vs(i−1) (Xs(i−1) ) × . . .×

e−Vs(1) (Xs(0) )+Vs(0) (Xs(0) )]=: E[Q0→i (ϕ)(X0)] where i 7→ X(i) is the
MCMC chain used in the mutation step. Then check that for i 6 i0

i 7→ zN
s(i)

∫
Q i→i0(ϕ) dηN

s(i)
is a martingale.
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Consistency2 when N → +∞

Proposition (Asymptotic Unbiasedness)

Consider any algorithm with adptive features continuous w.r.t
involved estimators. In the large sample size limit N → +∞, for
each i ,

(zNs(i) , η
N
s(i)

)
P−−−−−→

N→+∞
(zs(i) , ηs(i))

Proof–(has to be made generically).

By induction i → i + 1.

2A Beskos, A Jasra, N Kantas, A Thiery On the convergence of adaptive
sequential Monte Carlo methods 2016
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High dimension requires scarse mutations

High Dimension d � 1: weights that are × by
e−Vs(i+1) (Xs(i)

)+Vs(i)
(Xs(i)

) at each iteration have exponential
variance with d (typically).

Example

In Rd , if coordinates of X are i.i.d. and V has a sum form over
coordinates and is smooth w.r.t. s, by CLT, non-degeneracy of
weights requires:

s(i+1) − s(i) ∼ 1√
d

d→+∞−−−−−→ 0.

Tempting to not mutate at each s(i).
Idea: switch to a continuum of scores:

s ∈
{
s(0), . . . , s(I )

}
becomes s ∈ [0, 1].
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Indexing the algorithm by selection events

’Same’ algorithm, new representation:
Non-Triggered Mutations: Each particles evolve
independently according to a Markov process with generator
Ls invariant with respect to target ηs ∝ e−Vsπ.

Example
Piecewise constant Markov jump process

Ls(ϕ)(x) = λs(Ms(ϕ)(x)− ϕ(x)), ηsMs = ηs

can be simulated: i) mutations occur at random score (higher than
s0 with proba e−

∫ s0
0 λsds), ii) mutations with Ms .

Other examples: discretization of a Stochastic Differential
Equation, or Piecewise Deterministic Markov Process.
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Re-Indexing the algorithm by splitting events

Initialize particles and set S(0) = 0. Mutate all particles with Ls on
s ∈ [0, 1]. Iterate on j :
(j) Weights: compute the ’importance’ weight for s ∈ [0, 1] of

particles so that it targets ηs for each s, e.g.: e−
∫ s
0 ∂s′Vs′ (Xs′ )ds

′
.

(j) Selection Compute the next random score

S(j) := inf
{
s > S(j−1)|CriteriaNs == 1

}
e.g.: Criterias = weight degeneracy (Effective Sample Size) at
s.

Then perform selection/re-sampling according to weights.
(j) Triggered Mutations: additional Mutations-If-Selection with

M̃S(j) (option: On-Child, Adaptive).
(j) Preset Mutations: mutate with Ls on s ∈ [S (j), 1] new (⇔

all !) particles.
(Exit) Stop if S (j) = 1 else j → j + 1.
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Re-Indexing the algorithm by splitting events

Remarks
Preset mutations are simulated by ANTICIPATION (can be
adjusted to decrease cost).
Mutations with Ls can be adaptive BUT adaptivity must NOT
depend on ANTICIPATION.
Unbiasedness/Feynman-Kac/Del Moral structurea holds if i)
Ls non-adaptive, ii) no Triggered-Mutation .
AMS in ’static setting’ is an example with ONLY Triggered
Mutations-On-Child (see after).
AMS in ’dynamic setting’ is an example with
PSEUDO-triggered Mutation-On-Child: they are in fact
anticipated preset mutations, (see after).

aSee also Brehier Gazeau Goudenege Lelievre Rousset GAMS 2016
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Static3 AMS algorithm

Let k < N given. Assume rare event setting with:
π := anything simulable.
e−Vs = 1score>s .
Ls = 0, only triggered mutations.
Selection = killing + neutral bearing. Triggered by k particles
with lowest score which are killed and then neutrally borne.
Mutation-If-Selection with Mutation-On-Child. M̃s is a MCMC
kernel reversible w.r.t. π with rejection if proposal has score
6 s.

3F Cérou, P Del Moral, T Furon, A Guyader Sequential Monte Carlo for
rare event estimation 2012
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Dynamical4 AMS algorithm

π = Law of a Markov chain / process.
e−Vs = 1score>s , score = max(ξ(path)).
Ls = generator of π starting from first hitting time of
{ξ > s}. N.B.: do nothing if score not attained.
Selection = killing + neutral bearing. Triggered by k particle
killed.
Preset mutation of all particles with Ls . Mutations of old
particles already simulated by ANTICIPATION.

4F Cérou, A Guyader, Adaptive multilevel splitting for rare event analysis
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Adaptive Multilevel Splitting

− Black line: {ξ = constant}.
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Adaptive Multilevel Splitting
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Adaptive Multilevel Splitting
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Adaptive Multilevel Splitting
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Adaptive Multilevel Splitting
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Adaptive Multilevel Splitting
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Adaptive Multilevel Splitting
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Adaptive Multilevel Splitting



Context and Algo Adaptivity and Mutations Bias and consistency Indexing using selection AMS Conclusion

Consistency of static AMS for large mixing

Proposition (Asymptotic Unbiasedness)

Let N be the number of particles be finite and fixed. Assume the
mutation kernels associated with Triggered Mutations becomes
infinitely mixing that is Ms → ηs , then un-normalized estimators
becomes unbiased.

Proof–(To be detailed).

Triggered mutations becomes preset mutations given by ’exact
target after killing’ !! This limit is called the ’idealized case’ in the
literaturea. The limit has to be done (e.g. by a coupling argument
between M and η) !

aCE Bréhier, T Lelièvre, M Rousset Analysis of adaptive multilevel splitting
algorithms in an idealized case 2015
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Classification of SMC for ’target’ distributions

Usual obstruction to unbiasedness / Feynman-Kac-Del Moral
structure:

(Mean-Field) Adaptive Mutation. E.g.: adaptive tuning of
rejection rate in Metropolis.
Triggered Mutation: Mutation-If-Selection and its special case
Mutation-On-Child.

Algorithms can be indexed either by i) discrete increasing
scores s(i), ii) scores associated with effective selection events
..S(j)...
Algorithms indexed by effective selection events may exhibit
pseudo-adpativity, like dynamic AMS.
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Unbiasing any algorithm

In practice using BOTH (biased) adaptive/triggered mutations
AND an unbiased Feynman-Kac-Del Moral version is useful for
control:

Run the adaptive version, store the adaptive parameters.
Dilute the Triggered Mutations into a schedule of Preset
Mutations.
Run the unbiased variant.
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