A reformulated chance constraint optimization problem for the fatigue design of an offshore wind turbine mooring system

Alexis Cousin1*,*² & Josselin Garnier² & Martin Guiton¹ & Miguel Munoz Zuniga¹

> ¹ IFP Énergies Nouvelles ² CMAP, École Polytechnique

11-15 January, 2021

[Industrial Case : floating offshore wind turbine](#page-2-0)

[Problem reformulation](#page-17-0)

[AK-ECO](#page-34-0)

1 [Industrial Case : floating offshore wind turbine](#page-2-0)

2 [Problem reformulation](#page-17-0)

3 [AK-ECO](#page-34-0)

 000

Context

What is a **Floating Offshore Wind Turbine** (FOWT)?

- **Advantages:**
	- \blacksquare Extend the operating sites $(water-depth > 50m);$
	- Higher average wind speed;
	- **More steady wind;**
	- Facilitate social acceptance.

Figure: Different designs of FOWT. Source : [1].

- Need for a methodology to build **affordable** and **reliable**
	-

^[1] Wind Europe. Floating Offshore Wind Vision Statement, 2017.

 00000

 000

Context

What is a **Floating Offshore Wind Turbine** (FOWT)?

- Advantages:
	- \blacksquare Extend the operating sites $(water-depth > 50m);$
	- Higher average wind speed;
	- **More steady wind;**
	- Facilitate social acceptance.

Figure: Different designs of FOWT. Source : [1].

- Need for a methodology to build **affordable** and **reliable** structures.
	- Need to reduced the Levelized Cost of Energy (200) (MWh currently) for pre-commercial projects [1].

^[1] Wind Europe. Floating Offshore Wind Vision Statement, 2017.

 000

Focus on the mooring system

- Mooring system:
	- 3 catenary mooring lines composed of chains and connected along the inner cylinder of outer columns.
	- Significant contribution to capital cost;
	- Essential to ensure station-keeping under wind and wave loading;
	- Need to limit Ultimate and Fatigue Limit State (estimation challenging due to the large number of simulations needed). **Figure:** FOWT's profile

-
- - no consideration of second order wave forces;
	- **computations in frequency-domain** [3];
	- **the wind speed is constant on each interval of stationarity**.

 000

Focus on the mooring system

- Mooring system:
	- 3 catenary mooring lines composed of chains and connected along the inner cylinder of outer columns.
	- Significant contribution to capital cost;
	- **Essential to ensure station-keeping under wind and** wave loading;
	- Need to limit Ultimate and Fatigue Limit State (estimation challenging due to the large number of simulations needed). **Figure:** FOWT's profile

- Case study inspired by NREL 5MW turbine on DeepCWind floater [2];
- Simplifications:
	- **no consideration of second order wave forces**;
	- **computations in frequency-domain** [3];
	- **the wind speed is constant on each interval of stationarity**.

[2] Jonkman et al. Definition of a 5-MW Reference Wind Turbine for Offshore System Development. National Renewable Energy Laboratory, 2009

[3] Le Cunff et al. Frequency-Domain Calculations of Moored Vessel Motion Including Low Frequency Effect. International Conference on Offshore Mechanics and Arctic Engineering, 2008

| [RESIM 2021](#page-0-0) | 11-15 January, 2021 | 5 / 25

Minimization of the cost of the mooring system

Problem : **optimize the cost** of the mooring system under reliability constraints.

cost of the mooring system (deterministic).

- **Additional length to the mooring lines** (in m);
- **Lineic mass** of the mooring lines (in kg/m);
- **Position of the connection of the lines to the columns**: from

Minimization of the cost of the mooring system

Problem : **optimize the cost** of the mooring system under reliability constraints.

- Objective function:
	- **cost** of the mooring system (deterministic).

- **Additional length to the mooring lines** (in m);
- **Lineic mass** of the mooring lines (in kg/m);
- **Position of the connection of the lines to the columns**: from

Minimization of the cost of the mooring system

Problem : **optimize the cost** of the mooring system under reliability constraints.

Objective function:

cost of the mooring system (deterministic).

Design variables:

- **Additional length to the mooring lines** (in m);
- **Lineic mass** of the mooring lines (in kg/m);
- **Position of the connection of the lines to the columns**: from the bottom (0) to the top (1) of the column.

 00000

 000

Constraints and uncertainties

- Constraints (outputs of a numerical simulator - DeeplinesTM):
	- **Surge** must stay below a threshold of 10 meters (temporary overconservative threshold to illustrate the methodology on the case study);
	- **Tension** of the lines must stay positive;
	- **Fatigue** (accumulated damage) must stay below a resistance threshold *R*.

- tigue law coefficients) and on the **resistance** represented by a r.v. *Xp*;
-

Figure: Degrees of freedom.

Figure: Out of plane bending.

 00000

 000

Constraints and uncertainties

- Constraints (outputs of a numerical simulator - DeeplinesTM):
	- **Surge** must stay below a threshold of 10 meters (temporary overconservative threshold to illustrate the methodology on the case study);
	- **Tension** of the lines must stay positive;
	- **Fatigue** (accumulated damage) must stay below a resistance threshold *R*.
- Uncertainties are considered on:
	- **the model** (azimuth, damping and fatigue law coefficients) and on the **resistance** represented by a r.v. X_p ;
	- **the sea elevation** represented by a stochastic process $Z_{X_{LT}}$.

Figure: Degrees of freedom.

Figure: Out of plane bending.

Some details and simplifications of our problem

 \blacksquare X_{LT} is a sequence of random i.i.d triplets

$$
X_{LT} = ((H_s, T_p, U)_i, i = 1, \ldots, n)
$$

with known joint probability law : 7 possible outcomes (h_s^j, t_p^j, u^j) with probability p^j $(j = 1, \ldots, 7)$.

$$
Z_{x_{LT}}(t) = \sum_{i=1}^{n} Z_{(h_s, t_p, u)_i}(t) \mathbb{1}_{I_i}(t)
$$

- $Z_{(h_s,t_p,u)_i}(t)$ is a **stationary Gaussian process** defined by its ${\bf spectral \,\, density \,\, (JONSWAP \,\, [4])}$ parameterized by $(h_s, t_p, u)_i.$
-

Some details and simplifications of our problem

 \blacksquare X_{LT} is a sequence of random i.i.d triplets

$$
X_{LT} = ((H_s, T_p, U)_i, i = 1, \ldots, n)
$$

with known joint probability law : 7 possible outcomes (h_s^j, t_p^j, u^j) with probability p^j $(j = 1, \ldots, 7)$.

At $X_{LT} = x_{LT}$, the sea elevation $Z_{x_{LT}}$ is a piecewise stationary process :

$$
Z_{x_{LT}}(t) = \sum_{i=1}^{n} Z_{(h_s, t_p, u)_i}(t) \mathbb{1}_{I_i}(t)
$$

For each time interval *Iⁱ* :

- $Z_{(h_s,t_p,u)_i}(t)$ is a **stationary Gaussian process** defined by its ${\bf spectral \,\, density \,\, (JONSWAP \,\, [4])}$ parameterized by $(h_s, t_p, u)_i.$
-

^[4] Hasselmann et al. Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Deutches Hydrographisches Institut, 1973

Some details and simplifications of our problem

 \blacksquare X_{LT} is a sequence of random i.i.d triplets

$$
X_{LT} = ((H_s, T_p, U)_i, i = 1, \ldots, n)
$$

with known joint probability law : 7 possible outcomes (h_s^j, t_p^j, u^j) with probability p^j $(j = 1, \ldots, 7)$.

At $X_{LT} = x_{LT}$, the sea elevation $Z_{x_{LT}}$ is a piecewise stationary process :

$$
Z_{x_{LT}}(t) = \sum_{i=1}^{n} Z_{(h_s, t_p, u)_i}(t) \mathbb{1}_{I_i}(t)
$$

For each time interval *Iⁱ* :

- $Z_{(h_s,t_p,u)_i}(t)$ is a **stationary Gaussian process** defined by its ${\bf spectral \,\, density \,\, (JONSWAP \,\, [4])}$ parameterized by $(h_s, t_p, u)_i.$
- we consider the *Surge* and *T ension* processes as outputs of linear filters.

^[4] Hasselmann et al. Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Deutches Hydrographisches Institut, 1973

Mathematical formulation

Time-variant Reliability-Based Design Optimization (RBDO) :

$$
\begin{array}{lll} \displaystyle \min_{d \in \Omega_d} & \displaystyle \cosh(d) \\[1ex] \text{s.t} & \mathbb{P}_{X_p;Z_{X_{LT}}} \left(\max_{[0,T]} \text{Surge}_{d,X_p;Z_{X_{LT}}} (t) > 10 \right) & < 10^{-4} \\[1ex] & \mathbb{P}_{X_p;Z_{X_{LT}}} \left(\min_{[0,T]} \text{Tension}_{d,X_p;Z_{X_{LT}}} (t) < 0 \right) & < 10^{-4} \\[1ex] & \mathbb{P}_{X_p;Z_{X_{LT}}} \left(\text{Fatigue}_{[0,T]} (d,X_p;Z_{X_{LT}}) > R \right) & < 10^{-4} \end{array}
$$

We consider $T = 1$ year.

Mathematical formulation

Time-variant Reliability-Based Design Optimization (RBDO) :

$$
\begin{array}{lll} \displaystyle \min_{d \in \Omega_d} & \displaystyle \cosh(d) \\[1ex] \text{s.t} & \mathbb{P}_{X_p;Z_{X_{LT}}} \left(\max_{[0,T]} \text{Surge}_{d,X_p;Z_{X_{LT}}} (t) > 10 \right) & < 10^{-4} \\[1ex] & \mathbb{P}_{X_p;Z_{X_{LT}}} \left(\min_{[0,T]} \text{Tension}_{d,X_p;Z_{X_{LT}}} (t) < 0 \right) & < 10^{-4} \\[1ex] & \mathbb{P}_{X_p;Z_{X_{LT}}} \left(\text{Fatigue}_{[0,T]} (d,X_p;Z_{X_{LT}}) > R \right) & < 10^{-4} \end{array}
$$

We consider $T = 1$ year.

Difficulty

Estimation of the failure probabilities at each iteration of the optimization algorithm.

1 [Industrial Case : floating offshore wind turbine](#page-2-0)

2 [Problem reformulation](#page-17-0)

3 [AK-ECO](#page-34-0)

■ *Surge*_{d,xn};_{*Z*} output of **linear filter**:

$$
Surge_{d,x_p;Z}(t) = h_{d,x_p} * Z(t)
$$

Z Gaussian, stationary with known psd (JONSWAP)

 \Rightarrow $Surge_{d.x_n:Z}$ is also Gaussian and stationary;

the **mean**, **spectral density** of Z and the **transfer function** $FT(h_{d,x_p})$

■ *Surge*_{d,xn};_{*Z*} output of **linear filter**:

$$
Surge_{d,x_p;Z}(t) = h_{d,x_p} * Z(t)
$$

Z Gaussian, stationary with known psd (JONSWAP)

\Rightarrow $Surge_{d.x_n:Z}$ is also **Gaussian** and **stationary**;

the **mean**, **spectral density** of Z and the **transfer function** $FT(h_{d,x_p})$

■ *Surge*_{d,xn};_{*Z*} output of **linear filter**:

$$
Surge_{d,x_p;Z}(t) = h_{d,x_p} * Z(t)
$$

■ *Z* Gaussian, stationary with known psd (JONSWAP)

\Rightarrow $Surge_{d.x_n:Z}$ is also **Gaussian** and **stationary**;

 \Rightarrow the mean and spectral moments of $Surge_{d,x_p;Z}$ are computable from the **mean**, **spectral density** of Z and the <code>transfer</code> function $FT(h_{d,x_p})$ (given by DeeplinesTM).

■ *Surge*_{d,xn};_{*Z*} output of **linear filter**:

$$
Surge_{d,x_p;Z}(t) = h_{d,x_p} * Z(t)
$$

■ *Z* Gaussian, stationary with known psd (JONSWAP)

 \Rightarrow $Surge_{d.x_n:Z}$ is also **Gaussian** and **stationary**;

 \Rightarrow the mean and spectral moments of $Surge_{d,x_p;Z}$ are computable from the **mean**, **spectral density** of Z and the <code>transfer</code> function $FT(h_{d,x_p})$ (given by DeeplinesTM).

The same reasoning applies to the $Tension_{d,x_n;Z}$ process.

Theorem (5)

Let *ζ* be a standardized stationary Gaussian process with spectral density *K^ζ* . Then:

$$
\mathbb{P}\left(a_T\left(\max_{t\in[0,T]}\zeta(t)-b_T\right)\leq \alpha\right)\to \exp(-e^{-\alpha}) \quad \text{as} \quad T\to\infty
$$

where

$$
a_T = \sqrt{2 \log(T)}
$$
, $b_T = a_T + \frac{\log(\frac{\sqrt{\lambda_2}}{2\pi})}{a_T}$ and $\lambda_2 = \frac{1}{2\pi} \int_{\mathbb{R}} \nu^2 K_{\zeta}(\nu) d\nu$.

$$
\mathbb{P}\left(\max_{[0,T]} \zeta(t) \leqslant \alpha\right) \simeq \exp\left(-e^{a_T(b_T-\alpha)}\right).
$$

[5] Leadbetter et al, Extremes and Related Properties of Random Sequences and Processes, Chapter 8, 1983.

RESIM 2021 | 11-15 January, 2021 | 12 / 25

Theorem (5)

Let *ζ* be a standardized stationary Gaussian process with spectral density *K^ζ* . Then:

$$
\mathbb{P}\left(a_T\left(\max_{t\in[0,T]} \zeta(t) - b_T\right) \leq \alpha\right) \to \exp(-e^{-\alpha}) \quad \text{as} \quad T \to \infty
$$

where

$$
a_T = \sqrt{2 \log(T)}
$$
, $b_T = a_T + \frac{\log(\frac{\sqrt{\lambda_2}}{2\pi})}{a_T}$ and $\lambda_2 = \frac{1}{2\pi} \int_{\mathbb{R}} \nu^2 K_{\zeta}(\nu) d\nu$.

Thus, for *T* large enough:

$$
\mathbb{P}\left(\max_{[0,T]} \zeta(t) \leqslant \alpha\right) \simeq \exp\left(-e^{a_T(b_T-\alpha)}\right).
$$

[5] Leadbetter et al, Extremes and Related Properties of Random Sequences and Processes, Chapter 8, 1983.

RESIM 2021 | 11-15 January, 2021 | 12 / 25

$$
\mathbb{P}_{X_p;Z}\left(\max_{[0,T]}\text{Surge}_{d,X_p;Z}(t) > 10\right)
$$

$$
= \mathbb{E}_{X_p}\left[\mathbb{P}_{Z|X_p}\left(\max_{[0,T]}\text{Surge}_{d,X_p;Z}(t) > 10\right)\right]
$$

$$
\mathbb{P}_{Z|X_p} \left(\max_{[0,T]} \text{Surge}_{d,X_p;Z}(t) > 10 \right) \simeq 1 - \exp \left(-e^{a_T \left(b_T(d,X_p) + \frac{\mu_S(d,X_p) - 10}{\sigma_S(d,X_p)} \right)} \right)
$$

$$
\mathbb{P}_{X_p;Z}\left(\max_{[0,T]}\text{Surge}_{d,X_p;Z}(t) > 10\right)
$$

$$
= \mathbb{E}_{X_p}\left[\mathbb{P}_{Z|X_p}\left(\max_{[0,T]}\text{Surge}_{d,X_p;Z}(t) > 10\right)\right]
$$

At X_p fixed, $Surge_{d,x_n;Z}$ is a stationary Gaussian process.

$$
\mathbb{P}_{Z|X_p} \left(\max_{[0,T]} \text{Surge}_{d,X_p;Z}(t) > 10 \right) \simeq 1 - \exp \left(-e^{a_T \left(b_T(d,X_p) + \frac{\mu_S(d,X_p) - 10}{\sigma_S(d,X_p)} \right)} \right)
$$

$$
\mathbb{P}_{X_p;Z}\left(\max_{[0,T]}\text{Surge}_{d,X_p;Z}(t) > 10\right)
$$

$$
= \mathbb{E}_{X_p}\left[\mathbb{P}_{Z|X_p}\left(\max_{[0,T]}\text{Surge}_{d,X_p;Z}(t) > 10\right)\right]
$$

At X_p fixed, $Surge_{d,x_p,Z}$ is a stationary Gaussian process.

 \Rightarrow for *T* large enough, we have:

$$
\mathbb{P}_{Z|X_p} \left(\max_{[0,T]} \text{Surge}_{d,X_p;Z}(t) > 10 \right) \simeq 1 - \exp \left(-e^{a_T \left(b_T(d,X_p) + \frac{\mu_S(d,X_p) - 10}{\sigma_S(d,X_p)} \right)} \right)
$$

where a_T depends only on T and b_T depends on T and on the second spectral moment of the process *Surged,xp*;*Z*.

$$
\mathbb{P}_{X_p;Z}\left(\max_{[0,T]}\text{Surge}_{d,X_p;Z}(t) > 10\right)
$$

$$
= \mathbb{E}_{X_p}\left[\mathbb{P}_{Z|X_p}\left(\max_{[0,T]}\text{Surge}_{d,X_p;Z}(t) > 10\right)\right]
$$

At X_p fixed, $Surge_{d,x_n;Z}$ is a stationary Gaussian process.

 \Rightarrow for *T* large enough, we have:

$$
\mathbb{P}_{Z|X_p} \left(\max_{[0,T]} \text{Surge}_{d,X_p;Z}(t) > 10 \right) \simeq 1 - \exp \left(-e^{a_T \left(b_T(d,X_p) + \frac{\mu_S(d,X_p) - 10}{\sigma_S(d,X_p)} \right)} \right)
$$

where a_T depends only on T and b_T depends on T and on the second spectral moment of the process *Surged,xp*;*Z*.

The same reasoning applies to the constraint on the lines tension.

Fatigue constraint reformulation with Dirlik

$$
\mathbb{P}_{X_p,Z}\Big(\text{Fatigue}_{[0,T]}(d,X_p;Z) > R\Big) < 10^{-4}
$$

- Usual approach:
	- 1. computation of time series of tension;
	- 2. cycle counting method $+$ Miner's rule $+$ material fatigue law;
	- 3. Fatigue_[0,T] $(d, x_p, Z) \in \mathbb{R}^+$ (failure if $> R$).

$$
\mathbb{E}_Z\left[\text{Fatigue}_{[0,T]}(d,x_p,Z)\right] \simeq \text{Fatigue}_{[0,T]}^{Dir}(d,x_p)
$$

Fatigue constraint reformulation with Dirlik

$$
\mathbb{P}_{X_p,Z}\Big(\text{Fatigue}_{[0,T]}(d,X_p;Z) > R\Big) < 10^{-4}
$$

- Usual approach:
	- 1. computation of time series of tension;
	- 2. cycle counting method $+$ Miner's rule $+$ material fatigue law;
	- 3. Fatigue_[0,T] $(d, x_p, Z) \in \mathbb{R}^+$ (failure if $> R$).

■ Dirlik approach [5]: empirical formula to estimate the distribution of the amplitudes of tension cycles from the spectral moments of the tension process.

$$
\mathbb{E}_Z\left[\text{Fatigue}_{[0,T]}(d,x_p,Z)\right] \simeq \text{Fatigue}_{[0,T]}^{Dir}(d,x_p)
$$

| [RESIM 2021](#page-0-0) | 11-15 January, 2021 14 / 25

^[5] T. Dirlik. Application of computers in fatigue analysis. PhD thesis, University of Warwick, 1985.

Why the reformulation makes resolution easier

For each *d* and *xp*, it requires computation of **several time series realizations** of Surge and Tension processes to estimate these probabilities.

$$
\mathbb{P}_{X_p;Z}\left(\max_{[0,T]}\text{Surge}_{d,X_p;Z}(t) > 10\right) \qquad \mathbb{P}_{X_p;Z}\left(\text{Fatigue}_{[0,T]}(d,X_p;Z) > R\right)
$$

 \downarrow \downarrow For each *d* and *xp*, we only need Surge and Tension **means and spectral moments** given by the psd of *Z* and the transfer functions.

$$
\mathbb{E}_{X_p} \left[1 - \exp \left(-e^{a_T \left(b_T(d, X_d) + \frac{\mu_S(d, X_d) - 10}{\sigma_S(d, X_p)} \right)} \right) \right]
$$

$$
\mathbb{E}_{X_p} \left[\Phi \left(\frac{\ln \left(\text{Fatigue}_{[0, T]}^{Dir}(d, X_p) \right) - c_1(d_2, \mu_R)}{c_2(d_2, \mu_R)} \right) \right]
$$

Why the reformulation makes resolution easier

For each *d* and *xp*, it requires computation of **several time series realizations** of Surge and Tension processes to estimate these probabilities.

$$
\mathbb{P}_{X_p;Z}\left(\max_{[0,T]} \text{Surge}_{d,X_p;Z}(t) > 10\right) \qquad \mathbb{P}_{X_p;Z}\left(\text{Fatigue}_{[0,T]}(d,X_p;Z) > R\right)
$$

For each d and x_p , we only need Sure and Tension **means and spec-
tral moments** given by the psd of Z and the transfer functions.

$$
\mathbb{E}_{X_p} \left[1 - \exp \left(-e^{a_T \left(b_T(d, X_d) + \frac{\mu_S(d, X_d) - 10}{\sigma_S(d, X_p)} \right) \right)} \right]
$$

$$
\mathbb{E}_{X_p} \left[\Phi \left(\frac{\ln \left(\text{Fatigue}_{[0, T]}^{\text{Dir}}(d, X_p) \right) - c_1(d_2, \mu_R)}{c_2(d_2, \mu_R)} \right) \right]
$$

Stationary problem reformulation

$$
\begin{aligned}\n\min_{d \in \Omega_d} \quad & \cosh(d) \\
\text{s.t} \quad & \mathbb{E}_{X_p} \left[1 - \exp \left(-e^{a_T (b_T(d, X_p) + \frac{\mu_S(d, X_p) - 10}{\sigma_S(d, X_p)})} \right) \right] \\
& \mathbb{E}_{X_p} \left[1 - \exp \left(-e^{a_T (c_T(d, X_p) - \frac{\mu_T(d, X_p)}{\sigma_T(d, X_p)})} \right) \right] \\
& \mathbb{E}_{X_p} \left[\Phi \left(\frac{\ln \left(\text{Fatigue}_{[0, T]}^{Dir}(d, X_p) \right) - c_1(d_2, \mu_R)}{c_2(d_2, \mu_R)} \right) \right] \\
&< 10^{-4} \\
\end{aligned}
$$

with b_T , c_T , μ_S , μ_T , σ_S , σ_T , $Fatigue_{[0,T]}^{Dir}$ only depend on the transfer function (which depend on d and x_p) and on the spectral density on the process *Z*.

From stationary to piecewise stationary reformulation

min $\min_{d \in \Omega_d} cost(d)$ such that E*^X^p* Γ $1 - \exp$ $\sqrt{ }$ $\Bigg(-\sum_{}^7$ $j=1$ $e^{a_{Tp}j\Big(b_{Tp}j\left(d,X_p,h_s^j,t_p^j,u^j\right)+\frac{\mu_{\rm S}(d,X_p,h_s^j,t_p^j,u^j)-10}{\sigma_{\rm S}(d,X_p,h_s^j,t_p^j,u^j)}}$ $\sigma_S(d, X_p, h_s^j, t_p^j, u^j)$ \setminus 1 T \vert < 10⁻⁴ E*^X^p* Γ $1 - \exp$ $\sqrt{ }$ $\Bigg(-\sum_{}^7$ $j=1$ $a_{Tp^j}\bigg(c_{Tp^j}(d,X_p,h^j_s,t^j_p,u^j)-\frac{\mu_{\rm T}(d,X_p,h^j_s,t^j_p,u^j)}{\sigma_{\rm T}(d,X_p,h^j_s,t^j_p,u^j)}$ $\sigma_{\rm T}(d, X_p, h_s^j, t_p^j, u^j)$ \setminus \mathbf{I} T \vert < 10⁻⁴ E*^X^p* Γ $\vert \Phi$ $\sqrt{ }$ \mathbf{I} $\ln\left(T\sum_j p^j \text{Fatigue}^{Dir}_{[0,T]}(d,X_p,h^j_s,t^j_p,u^j)\right)-c_1(d_2,\mu_R)$ $c_2(d_2,\mu_R)$ $\overline{}$ -1 T \vert < 10⁻⁴

×. New method : Adaptive Kriging for Expectation Constraint Optimization (**AK-ECO**).

1 [Industrial Case : floating offshore wind turbine](#page-2-0)

2 [Problem reformulation](#page-17-0)

3 [AK-ECO](#page-34-0)

Surge constraint :

$$
\mathbb{E}_{X_p} \left[1 - \exp\left(-\sum_{j=1}^7 e^{a_{Tp}j\left(b_{Tpj}(d,X_p,h^j_s,t^j_p,u^j) + \frac{\mu_{\rm S}(d,X_p,h^j_s,t^j_p,u^j) - 10}{\sigma_{\rm S}(d,X_p,h^j_s,t^j_p,u^j)}\right)}\right)\right]
$$

$$
\mathbb{E}_{X} \left[1 - \exp\left(-\sum_{i=1}^7 \exp\left(M(d,X_p,h^j_s,t^j_p,u^j)\right)\right)\right]
$$

$$
\mathbb{E}_{X_p}\left[1-\exp\left(-\sum_{j=1}^r\exp\left(M(d,X_p,h_s^j,t_p^j,u^j)\right)\right)\right]
$$

model by **Gaussian process regression** or **Kriging**:

$$
\widetilde{M}(d,x_p,h_s,t_p,u) \sim \mathcal{N}\left(\mu_M(d,x_p,h_s,t_p,u), \sigma_M(d,x_p,h_s,t_p,u)^2\right)
$$

Surge constraint :

$$
\mathbb{E}_{X_p} \left[1 - \exp \left(- \sum_{j=1}^7 e^{a_{Tp} j} \left(b_{Tpj} (d, X_p, h_s^j, t_p^j, u^j) + \frac{\mu_S(d, X_p, h_s^j, t_p^j, u^j) - 10}{\sigma_S(d, X_p, h_s^j, t_p^j, u^j)} \right) \right) \right]
$$

$$
\mathbb{E}_{X_p}\left[1-\exp\left(-\sum_{j=1}^7 \exp\left(M(d,X_p,h_s^j,t_p^j,u^j)\right)\right)\right]
$$

model by **Gaussian process regression** or **Kriging**:

$$
\widetilde{M}(d,x_p,h_s,t_p,u) \sim \mathcal{N}\left(\mu_M(d,x_p,h_s,t_p,u), \sigma_M(d,x_p,h_s,t_p,u)^2\right)
$$

Surge constraint :

$$
\mathbb{E}_{X_p} \left[1 - \exp \left(- \sum_{j=1}^7 e^{a_{Tp} j} \left(b_{Tpj} (d, X_p, h_s^j, t_p^j, u^j) + \frac{\mu_S(d, X_p, h_s^j, t_p^j, u^j) - 10}{\sigma_S(d, X_p, h_s^j, t_p^j, u^j)} \right) \right) \right]
$$

$$
\mathbb{E}_{X_p}\left[1-\exp\left(-\sum_{j=1}^{7}\exp\left(M(d,X_p,h_s^j,t_p^j,u^j)\right)\right)\right]
$$

From a space-filling design of experiments (DoE), calibration of a metamodel by **Gaussian process regression** or **Kriging**:

$$
\widetilde{M}(d,x_p,h_s,t_p,u)\sim \mathcal{N}\left(\mu_M(d,x_p,h_s,t_p,u),\sigma_M(d,x_p,h_s,t_p,u)^2\right)
$$

Surge constraint :

$$
\mathbb{E}_{X_p} \left[1 - \exp \left(- \sum_{j=1}^7 e^{a_{Tp} j} \left(b_{Tpj} (d, X_p, h_s^j, t_p^j, u^j) + \frac{\mu_S(d, X_p, h_s^j, t_p^j, u^j) - 10}{\sigma_S(d, X_p, h_s^j, t_p^j, u^j)} \right) \right) \right]
$$

$$
\mathbb{E}_{X_p}\left[1-\exp\left(-\sum_{j=1}^7 \exp\left(M(d,X_p,h_s^j,t_p^j,u^j)\right)\right)\right]
$$

From a space-filling design of experiments (DoE), calibration of a metamodel by **Gaussian process regression** or **Kriging**:

$$
\widetilde{M}(d,x_p,h_s,t_p,u)\sim \mathcal{N}\left(\mu_M(d,x_p,h_s,t_p,u),\sigma_M(d,x_p,h_s,t_p,u)^2\right)
$$

■ Idea of AK-ECO : succession of cycles composed of a local enrichment of metamodels and optimization resolution.

Step 1: Initial design d^0 , initial metamodels and cycle = 1.

 $\widetilde{M}^{cycle-1} \longrightarrow \widetilde{M}^{cycle}.$

- \blacksquare **Step 3:** solve the RBDO from design $d^{cycle-1}.$
	-
	-
	-

Step 4:

-
-

- **Step 1:** Initial design d^0 , initial metamodels and cycle = 1.
- **Step 2:** local enrichment of metamodels: If $\overline{M}^{cycle-1}$ accurate enough around $d^{cycle-1}$
	- Else: sequential local enrichment of $\widetilde{M}^{cycle-1}$ around $d^{cycle-1}$. $\widetilde{M}^{cycle-1} \longrightarrow \widetilde{M}^{cycle}.$
- \blacksquare **Step 3:** solve the RBDO from design $d^{cycle-1}.$
	-
	-
	-
- **Step 4:**
	-
	-

- **Step 1:** Initial design d^0 , initial metamodels and cycle = 1.
- **Step 2:** local enrichment of metamodels: If $\overline{M}^{cycle-1}$ accurate enough around $d^{cycle-1}$ Else: sequential local enrichment of $\widetilde{M}^{cycle-1}$ around $d^{cycle-1}$.

 $\widetilde{M}^{cycle-1} \longrightarrow \widetilde{M}^{cycle}.$

- **Step 3:** solve the RBDO from design $d^{cycle-1}$.
	- optimization algorithm: Sequential Quadratic Approximation [6]
	- constraints evaluated through Monte Carlo applied on \tilde{M}^{cycle} .
	- Retrieve d^{cycle} .
- **Step 4:**
	-
	-

^[6] H. Langouët, Optimisation sans dérivées sous contraintes : deux applications industrielles en ingénierie de réservoir et en calibration des moteurs. PhD thesis, Université Nice Sophia Antipolis, 2011.

- **Step 1:** Initial design d^0 , initial metamodels and cycle = 1.
- **Step 2:** local enrichment of metamodels: If $\overline{M}^{cycle-1}$ accurate enough around $d^{cycle-1}$ Else: sequential local enrichment of $\widetilde{M}^{cycle-1}$ around $d^{cycle-1}$.

 $\widetilde{M}^{cycle-1} \longrightarrow \widetilde{M}^{cycle}.$

- **Step 3:** solve the RBDO from design $d^{cycle-1}$.
	- optimization algorithm: Sequential Quadratic Approximation [6]
	- constraints evaluated through Monte Carlo applied on \tilde{M}^{cycle} .
	- Retrieve d^{cycle} .

Step 4:

- If $cycle > 1$, $||d^{cycle} d^{cycle-1}|| < \epsilon$ and \tilde{M}^{cycle} accurate enough around *d cycle*: the final minimum is *d cycle* .
- **Else:** $cycle = cycle + 1$ and go back to step 2.

^[6] H. Langouët, Optimisation sans dérivées sous contraintes : deux applications industrielles en ingénierie de réservoir et en calibration des moteurs. PhD thesis, Université Nice Sophia Antipolis, 2011.

 $\widetilde{M}^{cycle}(d,x_p,h_s,t_p,u) \sim \mathcal{N}\left(\mu^{cycle}(d,x_p,h_s,t_p,u),\sigma^{cycle}(d,x_p,h_s,t_p,u)^2\right)$

$$
\frac{1}{N_{MC}}\sum_{i=1}^{N_{MC}}1-\exp\left(-\sum_{j=1}^{7}\exp\left(\mu^{cycle}\left(d^{cycle},x_{p}^{i},h_{s}^{j},t_{p}^{j},u^{j}\right)\right)\right) \tag{1}
$$

- $1.$ select x^i_p $(i \in \{1, \ldots, N_{MC}\})$ and h^j_s, t^j_p, u^j $(j = 1, \ldots, 7)$ that maximizes a **new criterion** specific to AK-ECO. This criterion favors
-
-
- 4. recalibrate the metamodel.

 $\widetilde{M}^{cycle}(d,x_p,h_s,t_p,u) \sim \mathcal{N}\left(\mu^{cycle}(d,x_p,h_s,t_p,u),\sigma^{cycle}(d,x_p,h_s,t_p,u)^2\right)$ Estimation of the surge constraint at d^{cycle} :

$$
\frac{1}{N_{MC}}\sum_{i=1}^{N_{MC}}1-\exp\left(-\sum_{j=1}^{7}\exp\left(\mu^{cycle}\left(d^{cycle},x_{p}^{i},h_{s}^{j},t_{p}^{j},u^{j}\right)\right)\right) \tag{1}
$$

- $1.$ select x^i_p $(i \in \{1, \ldots, N_{MC}\})$ and h^j_s, t^j_p, u^j $(j = 1, \ldots, 7)$ that maximizes a **new criterion** specific to AK-ECO. This criterion favors
-
-
- 4. recalibrate the metamodel.

 $\widetilde{M}^{cycle}(d,x_p,h_s,t_p,u) \sim \mathcal{N}\left(\mu^{cycle}(d,x_p,h_s,t_p,u),\sigma^{cycle}(d,x_p,h_s,t_p,u)^2\right)$ Estimation of the surge constraint at d^{cycle} :

$$
\frac{1}{N_{MC}}\sum_{i=1}^{N_{MC}}1-\exp\left(-\sum_{j=1}^{7}\exp\left(\mu^{cycle}\left(d^{cycle},x_{p}^{i},h_{s}^{j},t_{p}^{j},u^{j}\right)\right)\right) \tag{1}
$$

- $1.$ select x^i_p $(i \in \{1, \ldots, N_{MC}\})$ and h^j_s, t^j_p, u^j $(j = 1, \ldots, 7)$ that maximizes a **new criterion** specific to AK-ECO. This criterion favors points where the uncertainty of prediction *σ cycle* implies big uncertainties on the MC estimation [\(1\)](#page-43-0);
-
-
- 4. recalibrate the metamodel.

 $\widetilde{M}^{cycle}(d,x_p,h_s,t_p,u) \sim \mathcal{N}\left(\mu^{cycle}(d,x_p,h_s,t_p,u),\sigma^{cycle}(d,x_p,h_s,t_p,u)^2\right)$ Estimation of the surge constraint at d^{cycle} :

$$
\frac{1}{N_{MC}}\sum_{i=1}^{N_{MC}}1-\exp\left(-\sum_{j=1}^{7}\exp\left(\mu^{cycle}\left(d^{cycle},x_{p}^{i},h_{s}^{j},t_{p}^{j},u^{j}\right)\right)\right) \tag{1}
$$

- $1.$ select x^i_p $(i \in \{1, \ldots, N_{MC}\})$ and h^j_s, t^j_p, u^j $(j = 1, \ldots, 7)$ that maximizes a **new criterion** specific to AK-ECO. This criterion favors points where the uncertainty of prediction *σ cycle* implies big uncertainties on the MC estimation [\(1\)](#page-43-0);
- 2. evaluate the response at this point (one code call);
-
-

 $\widetilde{M}^{cycle}(d,x_p,h_s,t_p,u) \sim \mathcal{N}\left(\mu^{cycle}(d,x_p,h_s,t_p,u),\sigma^{cycle}(d,x_p,h_s,t_p,u)^2\right)$ Estimation of the surge constraint at d^{cycle} :

$$
\frac{1}{N_{MC}}\sum_{i=1}^{N_{MC}}1-\exp\left(-\sum_{j=1}^{7}\exp\left(\mu^{cycle}\left(d^{cycle},x_{p}^{i},h_{s}^{j},t_{p}^{j},u^{j}\right)\right)\right) \tag{1}
$$

- $1.$ select x^i_p $(i \in \{1, \ldots, N_{MC}\})$ and h^j_s, t^j_p, u^j $(j = 1, \ldots, 7)$ that maximizes a **new criterion** specific to AK-ECO. This criterion favors points where the uncertainty of prediction *σ cycle* implies big uncertainties on the MC estimation [\(1\)](#page-43-0);
- 2. evaluate the response at this point (one code call);
- 3. add the selected point and the corresponding response to the previous DoE;
-

 $\widetilde{M}^{cycle}(d,x_p,h_s,t_p,u) \sim \mathcal{N}\left(\mu^{cycle}(d,x_p,h_s,t_p,u),\sigma^{cycle}(d,x_p,h_s,t_p,u)^2\right)$ Estimation of the surge constraint at d^{cycle} :

$$
\frac{1}{N_{MC}}\sum_{i=1}^{N_{MC}}1-\exp\left(-\sum_{j=1}^{7}\exp\left(\mu^{cycle}\left(d^{cycle},x_{p}^{i},h_{s}^{j},t_{p}^{j},u^{j}\right)\right)\right) \tag{1}
$$

- $1.$ select x^i_p $(i \in \{1, \ldots, N_{MC}\})$ and h^j_s, t^j_p, u^j $(j = 1, \ldots, 7)$ that maximizes a **new criterion** specific to AK-ECO. This criterion favors points where the uncertainty of prediction *σ cycle* implies big uncertainties on the MC estimation [\(1\)](#page-43-0);
- 2. evaluate the response at this point (one code call);
- 3. add the selected point and the corresponding response to the previous DoE;
- 4. recalibrate the metamodel.

Comparaison of AK-ECO with reference methods in RBDO

Results of the different methods with $d^0 = (-1.07, 138.9, 0.07)$:

AK-ECO finds a reliable optimum with few calls to the expensive code.

^[7] X. Du and W. Chen, Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design, Journal of Mechanical Design, 2004

^[8] Lars Einar S. Stieng. Optimal design of offshore wind turbine support structures under uncertainty. PhD thesis, Norwegian University of Science and Technology, 2019.

1 [Industrial Case : floating offshore wind turbine](#page-2-0)

2 [Problem reformulation](#page-17-0)

3 [AK-ECO](#page-34-0)

- **Optimization problem** with **probabilistic constraints** dependent on a **random vector** and a **piecewise stationary stochastic Gaussian process**.
- Methodology in two parts:
	- Reformulate the problem thanks to **extreme value theory** and the **Dirlik** approach;
	- **Example 3** Solve the reformulated problem with a **new adaptive kriging** strategy **AK-ECO** and a **new learning criterion**.
- Successful application of the methodology to the academic case of a harmonic oscillator and to the wind turbine case.
- \blacksquare Perspective: quantify the approximation errors made during the reformulation steps.

M.R. Leadbetter, G. Lindgren and H. Rootzén. Extremes and Related Properties of Random Sequences and Processes. Springer-Verlag, 1983.

R B. Echard, N. Gayton and M. Lemaire. AK-MCS: An active learning reliability method combining Kriging and Monte Carlo Simulation Structural Safety, 33(2): 145-154, 2011.

V. Dubourg.

Adaptive surrogate models for reliability analysis and reliability-based design optimization

Phd Thesis, 2011.

M. Moustapha and B. Sudret.

Surrogate-assisted reliability-based design optimization: a survey and a new general framework

Structural and Multidisciplinary Optimization, 60(5): 2157-2176, 2019.

[Appendix](#page-53-0)

Appendix : enrichment criterion

$$
\max_{i \in \{1, ..., N_{MC}\}, j \in \{1, ..., 7\}} C_{aug}(d, x_p^i, h_s^j, t_p^j, u^j) \quad \text{where} \quad C_{aug}(d, x_p^i, h_s^j, t_p^j, u^j)
$$
\n
$$
= \left[F_5 \left(\sum_{j' \neq j} \exp \left(\mu(d, x_p^i, h_s^{j'}, t_p^{j'}, u^{j'}) \right) + \exp \left(\left(\mu(d, x_p^i, h_s^j, t_p^j, u^j) \right) + 2\sigma(d, x_p^i, h_s^j, t_p^j, u^j) \right) \right) \right.
$$
\n
$$
- F_5 \left(\sum_{j' \neq j} \exp \left(\mu(d, x_p^i, h_s^{j'}, t_p^{j'}, u^{j'}) \right) + \exp \left(\left(\mu(d, x_p^i, h_s^j, t_p^j, u^j) \right) - 2\sigma(d, x_p^i, h_s^j, t_p^j, u^j) \right) \right)
$$
\n
$$
\times f_{X_p}(x_p^i)
$$
\n
$$
F_5(x) = 1 - \exp(-x)
$$