A reformulated chance constraint optimization problem for the fatigue design of an offshore wind turbine mooring system

Alexis Cousin 1,2 & Josselin Garnier^2 & Martin Guiton^1 & Miguel Munoz Zuniga^1

¹ IFP Énergies Nouvelles ² CMAP, École Polytechnique

11-15 January, 2021

1 Industrial Case : floating offshore wind turbine

2 Problem reformulation

3 AK-ECO

Industrial Case : FOWT •••••••	Problem reformulation	AK-ECO 00000	Conclusion
Table of contents			

1 Industrial Case : floating offshore wind turbine

2 Problem reformulation

3 AK-ECO

Industrial Case	e :	FOWT
000000		

AK-ECO

Conclusion

Context

What is a Floating Offshore Wind Turbine (FOWT)?

- Advantages:
 - Extend the operating sites (water-depth > 50m);
 - Higher average wind speed;
 - More steady wind;
 - Facilitate social acceptance.

Figure: Different designs of FOWT. Source : [1].

- Need for a methodology to build affordable and reliable structures.
 - Need to reduced the Levelized Cost of Energy (200€/MWh currently) for pre-commercial projects [1].

^[1] Wind Europe. Floating Offshore Wind Vision Statement, 2017.

Industrial Case	e :	FOWT
000000		

AK-ECO

Conclusion

Context

What is a Floating Offshore Wind Turbine (FOWT)?

- Advantages:
 - Extend the operating sites (water-depth > 50m);
 - Higher average wind speed;
 - More steady wind;
 - Facilitate social acceptance.

Figure: Different designs of FOWT. Source : [1].

- Need for a methodology to build affordable and reliable structures.
 - Need to reduced the Levelized Cost of Energy (200€/MWh currently) for pre-commercial projects [1].

^[1] Wind Europe. Floating Offshore Wind Vision Statement, 2017.

Industrial	Case	÷	FOWT
000000	C		

AK-ECO

Conclusion

Focus on the mooring system

- Mooring system:
 - 3 catenary mooring lines composed of chains and connected along the inner cylinder of outer columns.
 - Significant contribution to capital cost;
 - Essential to ensure station-keeping under wind and wave loading;
 - Need to limit Ultimate and <u>Fatigue Limit State</u> (estimation challenging due to the large number of simulations needed).

Figure: FOWT's profile

- Case study inspired by NREL 5MW turbine on DeepCWind floater [2];
- Simplifications:
 - no consideration of second order wave forces;
 - computations in frequency-domain [3];
 - the wind speed is constant on each interval of stationarity.

[2] Jonkman et al. Definition of a 5-MW Reference Wind Turbine for Offshore System Development. National Renewable Energy Laboratory, 2009

[3] Le Cunff et al. Frequency-Domain Calculations of Moored Vessel Motion Including Low Frequency Effect. International Conference on Offshore Mechanics and Arctic Engineering, 2008

Industrial	Case	÷	FOWT
000000	C		

AK-ECO

Conclusion

Focus on the mooring system

- Mooring system:
 - 3 catenary mooring lines composed of chains and connected along the inner cylinder of outer columns.
 - Significant contribution to capital cost;
 - Essential to ensure station-keeping under wind and wave loading;
 - Need to limit Ultimate and Fatigue Limit State (estimation challenging due to the large number of simulations needed).

Figure: FOWT's profile

- Case study inspired by NREL 5MW turbine on DeepCWind floater [2];
- Simplifications:
 - no consideration of second order wave forces;
 - computations in frequency-domain [3];
 - the wind speed is constant on each interval of stationarity.

[2] Jonkman et al. Definition of a 5-MW Reference Wind Turbine for Offshore System Development. National Renewable Energy Laboratory, 2009

[3] Le Cunff et al. Frequency-Domain Calculations of Moored Vessel Motion Including Low Frequency Effect. International Conference on Offshore Mechanics and Arctic Engineering, 2008

RESIM 2021 | 11-15 January, 2021

Industrial Case : FOWT	Problem reformulation	AK-ECO	Conclusion
000000	0000000	00000	000

Minimization of the cost of the mooring system

Problem : **optimize the cost** of the mooring system under reliability constraints.

• Objective function:

cost of the mooring system (deterministic).

Design variables:

- Additional length to the mooring lines (in m);
- Lineic mass of the mooring lines (in kg/m);
- **Position of the connection of the lines to the columns**: from the bottom (0) to the top (1) of the column.

Industrial Case : FOWT	Problem reformulation	AK-ECO	Conclusion
000000	0000000	00000	000

Minimization of the cost of the mooring system

Problem : **optimize the cost** of the mooring system under reliability constraints.

- Objective function:
 - **cost** of the mooring system (deterministic).

Design variables:

- Additional length to the mooring lines (in m);
- Lineic mass of the mooring lines (in kg/m);
- **Position of the connection of the lines to the columns**: from the bottom (0) to the top (1) of the column.

Industrial Case : FOWT	Problem reformulation	AK-ECO	Conclusion
000000	0000000	00000	000

Minimization of the cost of the mooring system

Problem : **optimize the cost** of the mooring system under reliability constraints.

- Objective function:
 - **cost** of the mooring system (deterministic).
- Design variables:
 - Additional length to the mooring lines (in m);
 - Lineic mass of the mooring lines (in kg/m);
 - Position of the connection of the lines to the columns: from the bottom (0) to the top (1) of the column.

Industrial	Case	÷	FOWT
0000000	C		

AK-ECO

Conclusion

Constraints and uncertainties

- Constraints (outputs of a numerical simulator DeeplinesTM):
 - Surge must stay below a threshold of 10 meters (temporary overconservative threshold to illustrate the methodology on the case study);
 - **Tension** of the lines must stay positive;
 - **Fatigue** (accumulated damage) must stay below a resistance threshold *R*.

Uncertainties are considered on:

- the model (azimuth, damping and fatigue law coefficients) and on the resistance represented by a r.v. X_p;
- the **sea elevation** represented by a stochastic process $Z_{X_{LT}}$.

Figure: Degrees of freedom.

Figure: Out of plane bending.

Industrial	Case	÷	FOWT
0000000	C		

AK-ECO

Conclusion

Constraints and uncertainties

- Constraints (outputs of a numerical simulator DeeplinesTM):
 - Surge must stay below a threshold of 10 meters (temporary overconservative threshold to illustrate the methodology on the case study);
 - **Tension** of the lines must stay positive;
 - **Fatigue** (accumulated damage) must stay below a resistance threshold *R*.
- Uncertainties are considered on:
 - the model (azimuth, damping and fatigue law coefficients) and on the resistance represented by a r.v. X_p;
 - the sea elevation represented by a stochastic process $Z_{X_{LT}}$.

Figure: Degrees of freedom.

Figure: Out of plane bending.

Industrial Case : FOWT	Problem reformulation	AK-ECO	Conclusion
0000000	0000000	00000	000

Some details and simplifications of our problem

X_{LT} is a sequence of random i.i.d triplets

$$X_{LT} = ((H_s, T_p, U)_i, i = 1, \dots, n)$$

with known joint probability law : 7 possible outcomes (h_s^j, t_p^j, u^j) with probability p^j (j = 1, ..., 7).

At $X_{LT} = x_{LT}$, the sea elevation $Z_{x_{LT}}$ is a piecewise stationary process :

$$Z_{x_{LT}}(t) = \sum_{i=1}^{n} Z_{(h_s, t_p, u)_i}(t) \mathbb{1}_{I_i}(t)$$

For each time interval I_i :

- Z_{(h_s,t_p,u)_i}(t) is a stationary Gaussian process defined by its spectral density (JONSWAP [4]) parameterized by (h_s,t_p,u)_i.
- we consider the Surge and Tension processes as outputs of linear filters.

^[4] Hasselmann et al. *Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP)*. Deutches Hydrographisches Institut, 1973

Industrial Case : FOWT	Problem reformulation	AK-ECO	Conclusion
0000000	0000000	00000	000

Some details and simplifications of our problem

• X_{LT} is a sequence of random i.i.d triplets

$$X_{LT} = ((H_s, T_p, U)_i, \ i = 1, \dots, n)$$

with known joint probability law : 7 possible outcomes (h_s^j, t_p^j, u^j) with probability p^j (j = 1, ..., 7).

At $X_{LT} = x_{LT}$, the sea elevation $Z_{x_{LT}}$ is a piecewise stationary process :

$$Z_{x_{LT}}(t) = \sum_{i=1}^{n} Z_{(h_s, t_p, u)_i}(t) \mathbb{1}_{I_i}(t)$$

For each time interval I_i :

- Z_{(h_s,t_p,u)_i}(t) is a stationary Gaussian process defined by its spectral density (JONSWAP [4]) parameterized by (h_s, t_p, u)_i.
- we consider the *Surge* and *Tension* processes as outputs of linear filters.

^[4] Hasselmann et al. Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Deutches Hydrographisches Institut, 1973

Industrial Case : FOWT	Problem reformulation	AK-ECO	Conclusion
0000000	0000000	00000	000

Some details and simplifications of our problem

X_{LT} is a sequence of random i.i.d triplets

$$X_{LT} = ((H_s, T_p, U)_i, i = 1, \dots, n)$$

with known joint probability law : 7 possible outcomes (h_s^j, t_p^j, u^j) with probability p^j (j = 1, ..., 7).

At $X_{LT} = x_{LT}$, the sea elevation $Z_{x_{LT}}$ is a piecewise stationary process :

$$Z_{x_{LT}}(t) = \sum_{i=1}^{n} Z_{(h_s, t_p, u)_i}(t) \mathbb{1}_{I_i}(t)$$

For each time interval I_i :

- Z_{(h_s,t_p,u)_i}(t) is a stationary Gaussian process defined by its spectral density (JONSWAP [4]) parameterized by (h_s, t_p, u)_i.
- we consider the Surge and Tension processes as outputs of linear filters.

^[4] Hasselmann et al. Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Deutches Hydrographisches Institut, 1973

Industrial Case	÷	FOWT	
000000			

AK-ECO

Conclusion

Mathematical formulation

Time-variant Reliability-Based Design Optimization (RBDO) :

$$\begin{split} \min_{d \in \Omega_d} & cost(d) \\ \text{s.t} & \mathbb{P}_{X_p; Z_{X_{LT}}} \left(\max_{[0,T]} \operatorname{Surge}_{d, X_p; Z_{X_{LT}}}(t) > 10 \right) & < 10^{-4} \\ & \mathbb{P}_{X_p; Z_{X_{LT}}} \left(\min_{[0,T]} \operatorname{Tension}_{d, X_p; Z_{X_{LT}}}(t) < 0 \right) & < 10^{-4} \\ & \mathbb{P}_{X_p; Z_{X_{LT}}} \left(\operatorname{Fatigue}_{[0,T]}(d, X_p; Z_{X_{LT}}) > R \right) & < 10^{-4} \end{split}$$

We consider T = 1 year.

Difficulty

Estimation of the failure probabilities at each iteration of the optimization algorithm.

Industrial Case	÷	FOWT	
000000			

AK-ECO

Conclusion

Mathematical formulation

Time-variant Reliability-Based Design Optimization (RBDO) :

$$\begin{split} \min_{d \in \Omega_d} & cost(d) \\ \text{s.t} & \mathbb{P}_{X_p; Z_{X_{LT}}} \left(\max_{[0,T]} \operatorname{Surge}_{d, X_p; Z_{X_{LT}}}(t) > 10 \right) & < 10^{-4} \\ & \mathbb{P}_{X_p; Z_{X_{LT}}} \left(\min_{[0,T]} \operatorname{Tension}_{d, X_p; Z_{X_{LT}}}(t) < 0 \right) & < 10^{-4} \\ & \mathbb{P}_{X_p; Z_{X_{LT}}} \left(\operatorname{Fatigue}_{[0,T]}(d, X_p; Z_{X_{LT}}) > R \right) & < 10^{-4} \end{split}$$

We consider T = 1 year.

Difficulty

Estimation of the failure probabilities at each iteration of the optimization algorithm.

Industrial Case : FOWT	Problem reformulation	AK-ECO	Conclusion
0000000	•••••••	00000	
Table of contents			

1 Industrial Case : floating offshore wind turbine

2 Problem reformulation

3 AK-ECO

Industrial C	Case : FOW	/T	l	Problem reformulation	AK-ECO 00000	Conclusion 000
-						

At $X_p = x_p$ fixed and with Z stationary:

• $Surge_{d,x_p;Z}$ output of linear filter:

$$Surge_{d,x_p;Z}(t) = h_{d,x_p} * Z(t)$$

Z Gaussian, stationary with known psd (JONSWAP)

 $\Rightarrow Surge_{d,x_p;Z}$ is also **Gaussian** and **stationary**;

 \Rightarrow the mean and spectral moments of $Surge_{d,x_p;Z}$ are computable from the **mean**, **spectral density** of Z and the **transfer function** $FT(h_{d,x_p})$ (given by DeeplinesTM).

The same reasoning applies to the $Tension_{d,x_{p};Z}$ process.

Industrial C	ase : FOWT	Problem reformulation	AK-ECO 00000	Conclusion
-				

At $X_p = x_p$ fixed and with Z stationary:

• $Surge_{d,x_p;Z}$ output of linear filter:

$$Surge_{d,x_p;Z}(t) = h_{d,x_p} * Z(t)$$

Z Gaussian, stationary with known psd (JONSWAP)

\Rightarrow Surge_{d,x_p;Z} is also Gaussian and stationary;

 \Rightarrow the mean and spectral moments of $Surge_{d,x_p;Z}$ are computable from the **mean**, **spectral density** of Z and the **transfer function** $FT(h_{d,x_p})$ (given by DeeplinesTM).

The same reasoning applies to the $Tension_{d,x_{\mathcal{P}};Z}$ process.

Industrial C	Case : FOWT	Ē	Prob ⊙●C	blem reformula	ation	A	AK-ECO	Conclusion
-		.						

At $X_p = x_p$ fixed and with Z stationary:

• $Surge_{d,x_p;Z}$ output of linear filter:

$$Surge_{d,x_p;Z}(t) = h_{d,x_p} * Z(t)$$

Z Gaussian, stationary with known psd (JONSWAP)

\Rightarrow Surge_{d,x_p;Z} is also Gaussian and stationary;

 \Rightarrow the mean and spectral moments of $Surge_{d,x_p;Z}$ are computable from the **mean**, **spectral density** of Z and the **transfer function** $FT(h_{d,x_p})$ (given by DeeplinesTM).

The same reasoning applies to the $Tension_{d,x_{p};Z}$ process.

Industrial C	Case : FO	WT	Problem reformulation	AK-ECO 00000	Conclusion
-		6.11			

At $X_p = x_p$ fixed and with Z stationary:

• $Surge_{d,x_p;Z}$ output of linear filter:

$$Surge_{d,x_p;Z}(t) = h_{d,x_p} * Z(t)$$

Z Gaussian, stationary with known psd (JONSWAP)

\Rightarrow Surge_{d,x_p;Z} is also **Gaussian** and **stationary**;

 \Rightarrow the mean and spectral moments of $Surge_{d,x_p;Z}$ are computable from the **mean**, **spectral density** of Z and the **transfer function** $FT(h_{d,x_p})$ (given by DeeplinesTM).

The same reasoning applies to the $Tension_{d,x_p;Z}$ process.

Industrial Case : FOWT 0000000	Problem reformulation	AK-ECO 00000	Conclusion
Extreme value theory			

Theorem (5)

Let ζ be a standardized stationary Gaussian process with spectral density $K_\zeta.$ Then:

$$\mathbb{P}\left(a_T\left(\max_{t\in[0,T]}\zeta(t)-b_T\right)\leqslant\alpha\right)\to\exp(-e^{-\alpha}) \text{ as } T\to\infty$$

where

$$a_T = \sqrt{2\log(T)}$$
, $b_T = a_T + \frac{\log(\frac{\sqrt{\lambda_2}}{2\pi})}{a_T}$ and $\lambda_2 = \frac{1}{2\pi} \int_{\mathbb{R}} \nu^2 K_{\zeta}(\nu) d\nu$.

Thus, for T large enough:

$$\mathbb{P}\left(\max_{[0,T]}\zeta(t)\leqslant\alpha\right)\simeq\exp\left(-e^{a_T(b_T-\alpha)}\right).$$

[5] Leadbetter et al, Extremes and Related Properties of Random Sequences and Processes, Chapter 8, 1983.

RESIM 2021 | 11-15 January, 2021

Industrial Case : FOWT 0000000	Problem reformulation	AK-ECO 00000	Conclusion
Extreme value theory			

Theorem (5)

Let ζ be a standardized stationary Gaussian process with spectral density $K_\zeta.$ Then:

$$\mathbb{P}\left(a_T\left(\max_{t\in[0,T]}\zeta(t)-b_T\right)\leqslant\alpha\right)\to\exp(-e^{-\alpha}) \text{ as } T\to\infty$$

where

$$a_T = \sqrt{2\log(T)}$$
 , $b_T = a_T + \frac{\log(\frac{\sqrt{\lambda_2}}{2\pi})}{a_T}$ and $\lambda_2 = \frac{1}{2\pi} \int_{\mathbb{R}} \nu^2 K_{\zeta}(\nu) d\nu$.

Thus, for T large enough:

$$\mathbb{P}\left(\max_{[0,T]}\zeta(t)\leqslant\alpha\right)\simeq\exp\left(-e^{a_T(b_T-\alpha)}\right).$$

[5] Leadbetter et al, Extremes and Related Properties of Random Sequences and Processes, Chapter 8, 1983.

RESIM 2021 | 11-15 January, 2021

Industrial Case : FOWT	Problem reformulation	AK-ECO	Conclusion
000000	0000000	00000	000

$$\mathbb{P}_{X_p;Z}\left(\max_{[0,T]} \operatorname{Surge}_{d,X_p;Z}(t) > 10\right)$$
$$= \mathbb{E}_{X_p}\left[\mathbb{P}_{Z|X_p}\left(\max_{[0,T]} \operatorname{Surge}_{d,X_p;Z}(t) > 10\right)\right]$$

At X_p fixed, $Surge_{d,x_p;Z}$ is a stationary Gaussian process.

 \Rightarrow for T large enough, we have:

$$\mathbb{P}_{Z|X_p}\left(\max_{[0,T]} \operatorname{Surge}_{d,X_p;Z}(t) > 10\right) \simeq 1 - \exp\left(-e^{a_T\left(b_T(d,X_p) + \frac{\mu_{\mathbf{S}}(d,X_p) - 10}{\sigma_{\mathbf{S}}(d,X_p)}\right)}\right)$$

where a_T depends only on T and b_T depends on T and on the second spectral moment of the process $Surge_{d,x_p;Z}$.

Industrial Case : FOWT	Problem reformulation	AK-ECO	Conclusion
000000	0000000	00000	000

$$\mathbb{P}_{X_p;Z}\left(\max_{[0,T]} \operatorname{Surge}_{d,X_p;Z}(t) > 10\right)$$
$$= \mathbb{E}_{X_p}\left[\mathbb{P}_{Z|X_p}\left(\max_{[0,T]} \operatorname{Surge}_{d,X_p;Z}(t) > 10\right)\right]$$

At X_p fixed, $Surge_{d,x_p;Z}$ is a stationary Gaussian process.

 \Rightarrow for T large enough, we have:

$$\mathbb{P}_{Z|X_p}\left(\max_{[0,T]} \operatorname{Surge}_{d,X_p;Z}(t) > 10\right) \simeq 1 - \exp\left(-e^{a_T\left(b_T(d,X_p) + \frac{\mu_{\mathrm{S}}(d,X_p) - 10}{\sigma_{\mathrm{S}}(d,X_p)}\right)}\right)$$

where a_T depends only on T and b_T depends on T and on the second spectral moment of the process $Surge_{d,x_p;Z}$.

Industrial Case : FOWT	Problem reformulation	AK-ECO	Conclusion
000000	0000000	00000	000

$$\mathbb{P}_{X_p;Z}\left(\max_{[0,T]} \operatorname{Surge}_{d,X_p;Z}(t) > 10\right)$$
$$= \mathbb{E}_{X_p}\left[\mathbb{P}_{Z|X_p}\left(\max_{[0,T]} \operatorname{Surge}_{d,X_p;Z}(t) > 10\right)\right]$$

At X_p fixed, $Surge_{d,x_p;Z}$ is a stationary Gaussian process.

 \Rightarrow for T large enough, we have:

$$\mathbb{P}_{Z|X_p}\left(\max_{[0,T]} \operatorname{Surge}_{d,X_p;Z}(t) > 10\right) \simeq 1 - \exp\left(-e^{a_T\left(b_T(d,X_p) + \frac{\mu_{\mathrm{S}}(d,X_p) - 10}{\sigma_{\mathrm{S}}(d,X_p)}\right)}\right)$$

where a_T depends only on T and b_T depends on T and on the second spectral moment of the process $Surge_{d,x_p;Z}$.

Industrial Case : FOWT	Problem reformulation	AK-ECO	Conclusion
000000	0000000	00000	000

$$\mathbb{P}_{X_p;Z}\left(\max_{[0,T]} \operatorname{Surge}_{d,X_p;Z}(t) > 10\right)$$
$$= \mathbb{E}_{X_p}\left[\mathbb{P}_{Z|X_p}\left(\max_{[0,T]} \operatorname{Surge}_{d,X_p;Z}(t) > 10\right)\right]$$

At X_p fixed, $Surge_{d,x_p;Z}$ is a stationary Gaussian process.

 \Rightarrow for T large enough, we have:

$$\mathbb{P}_{Z|X_p}\left(\max_{[0,T]} \operatorname{Surge}_{d,X_p;Z}(t) > 10\right) \simeq 1 - \exp\left(-e^{a_T\left(b_T(d,X_p) + \frac{\mu_{\mathrm{S}}(d,X_p) - 10}{\sigma_{\mathrm{S}}(d,X_p)}\right)}\right)$$

where a_T depends only on T and b_T depends on T and on the second spectral moment of the process $Surge_{d,x_p;Z}$.

Industrial Case : FOWT	Problem reformulation	AK-ECO	Conclusion
000000	0000000	00000	000

Fatigue constraint reformulation with Dirlik

$$\mathbb{P}_{X_p;Z}\left(\mathrm{Fatigue}_{[0,T]}(d, X_p; Z) > R\right) < 10^{-4}$$

Usual approach:

- 1. computation of time series of tension;
- 2. cycle counting method + Miner's rule + material fatigue law;
- 3. Fatigue_[0,T] $(d, x_p, Z) \in \mathbb{R}^+$ (failure if > R).

Dirlik approach [5]: empirical formula to estimate the distribution of the amplitudes of tension cycles from the spectral moments of the tension process.

$$\mathbb{E}_{Z}\left[\operatorname{Fatigue}_{[0,T]}(d, x_{p}, Z)\right] \simeq \operatorname{Fatigue}_{[0,T]}^{Dir}(d, x_{p})$$

^[5] T. Dirlik. Application of computers in fatigue analysis. PhD thesis, University of Warwick, 1985

Industrial Case : FOWT 0000000	Problem reformulation	AK-ECO 00000	Conclusion

Fatigue constraint reformulation with Dirlik

$$\mathbb{P}_{X_p;Z}\left(\mathrm{Fatigue}_{[0,T]}(d, X_p; Z) > R\right) < 10^{-4}$$

- Usual approach:
 - 1. computation of time series of tension;
 - 2. cycle counting method + Miner's rule + material fatigue law;
 - 3. Fatigue_[0,T] $(d, x_p, Z) \in \mathbb{R}^+$ (failure if > R).

 Dirlik approach [5]: empirical formula to estimate the distribution of the amplitudes of tension cycles from the spectral moments of the tension process.

$$\mathbb{E}_{Z}\left[\operatorname{Fatigue}_{[0,T]}(d, x_{p}, Z)\right] \simeq \operatorname{Fatigue}_{[0,T]}^{Dir}(d, x_{p})$$

RESIM 2021 | 11-15 January, 2021

^[5] T. Dirlik. Application of computers in fatigue analysis. PhD thesis, University of Warwick, 1985.

Industrial Case : FOWT	Problem reformulation	AK-ECO	Conclusion
000000	0000000	00000	000

Why the reformulation makes resolution easier

For each d and x_p , it requires computation of several time series realizations of Surge and Tension processes to estimate these probabilities.

$$\mathbb{P}_{X_p;Z}\left(\max_{[0,T]} \operatorname{Surge}_{d,X_p;Z}(t) > 10\right) \qquad \mathbb{P}_{X_p;Z}\left(\operatorname{Fatigue}_{[0,T]}(d,X_p;Z) > R\right)$$
For each d and $\overset{\downarrow}{x_p}$, we only need Surge and Tension means and spectrul moments given by the red of Z and the transfer functions

$$\mathbb{E}_{X_p}\left[1 - \exp\left(-e^{a_T\left(b_T(d, X_d) + \frac{\mu_{\mathrm{S}}(d, X_d) - 10}{\sigma_{\mathrm{S}}(d, X_p)}\right)}\right)\right]$$
$$\mathbb{E}_{X_p}\left[\Phi\left(\frac{\ln\left(\mathrm{Fatigue}_{[0,T]}^{Dir}(d, X_p)\right) - c_1(d_2, \mu_R)}{c_2(d_2, \mu_R)}\right)\right]$$

Industrial Case : FOWT	Problem reformulation	AK-ECO	Conclusion
000000	0000000	00000	000

Why the reformulation makes resolution easier

For each d and x_p , it requires computation of several time series realizations of Surge and Tension processes to estimate these probabilities.

$$\mathbb{P}_{X_p;Z}\left(\max_{[0,T]} \operatorname{Surge}_{d,X_p;Z}(t) > 10\right) \qquad \mathbb{P}_{X_p;Z}\left(\operatorname{Fatigue}_{[0,T]}(d,X_p;Z) > R\right)$$

For each d and $\overset{\downarrow}{x_p}$, we only need Surge and Tension **means and spec-**
tral moments given by the psd of Z and the transfer functions.

$$\mathbb{E}_{X_p}\left[1 - \exp\left(-e^{a_T\left(b_T(d, X_d) + \frac{\mu_{\mathbb{S}}(d, X_d) - 10}{\sigma_{\mathbb{S}}(d, X_p)}\right)}\right)\right]$$
$$\mathbb{E}_{X_p}\left[\Phi\left(\frac{\ln\left(\operatorname{Fatigue}_{[0,T]}^{Dir}(d, X_p)\right) - c_1(d_2, \mu_R)}{c_2(d_2, \mu_R)}\right)\right]$$

Industrial Case : FOWT 0000000	Problem reformulation	AK-ECO 00000	Conclusion
Stationary problem refo	rmulation		
$egin{array}{ll} \min_{d\in\Omega_d} & cost(d) \ {f s.t} & \mathbb{E}_{X_p} \left[1-\exp\left(ight. ight) ight. \end{array} ight.$	$\left(-e^{a_T(b_T(d,X_p)+\frac{\mu_{\rm S}(d,X_p)-10}{\sigma_{\rm S}(d,X_p)}}\right)$)] <	$< 10^{-4}$

$$\mathbb{E}_{X_p} \left[1 - \exp\left(-e^{a_T(c_T(d,X_p) - \frac{\mu_T(d,X_p)}{\sigma_T(d,X_p)}}\right) \right] < 10^{-4}$$
$$\mathbb{E}_{X_p} \left[\Phi\left(\frac{\ln\left(\operatorname{Fatigue}_{[0,T]}^{Dir}(d,X_p)\right) - c_1(d_2,\mu_R)}{c_2(d_2,\mu_R)}\right) \right] < 10^{-4}$$

with b_T , c_T , μ_S , μ_T , σ_S , σ_T , $Fatigue_{[0,T]}^{Dir}$ only depend on the transfer function (which depend on d and x_p) and on the spectral density on the process Z.

Industrial Case : FOWT	Problem reformulation	AK-ECO	Conclusion
000000	0000000	00000	000

From stationary to piecewise stationary reformulation

$$\begin{split} & \min_{d \in \Omega_d} \cos t(d) & \text{such that} \\ & \mathbb{E}_{X_p} \left[1 - \exp\left(-\sum_{j=1}^7 e^{a_{T_p j} \left(b_{T_p j}(d, X_p, h_s^j, t_p^j, u^j) + \frac{\mu_{\mathrm{S}}(d, X_p, h_s^j, t_p^j, u^j) - 10}{\sigma_{\mathrm{S}}(d, X_p, h_s^j, t_p^j, u^j)} \right)} \right) \right] & < 10^{-4} \\ & \mathbb{E}_{X_p} \left[1 - \exp\left(-\sum_{j=1}^7 e^{a_{T_p j} \left(c_{T_p j}(d, X_p, h_s^j, t_p^j, u^j) - \frac{\mu_{\mathrm{T}}(d, X_p, h_s^j, t_p^j, u^j)}{\sigma_{\mathrm{T}}(d, X_p, h_s^j, t_p^j, u^j)} \right)} \right) \right] & < 10^{-4} \\ & \mathbb{E}_{X_p} \left[\Phi\left(\frac{\ln\left(T \sum_j p^j \mathrm{Fatigue}_{[0,T]}^{Dir}(d, X_p, h_s^j, t_p^j, u^j) \right) - c_1(d_2, \mu_R)}{c_2(d_2, \mu_R)} \right) \right] & < 10^{-4} \end{split}$$

 New method : Adaptive Kriging for Expectation Constraint Optimization (AK-ECO).

Table of contents		11300	500
Industrial Case : FOWT	Problem reformulation	AK-ECO	Conclusion

1 Industrial Case : floating offshore wind turbine

2 Problem reformulation

3 AK-ECO

Industrial Case : FOWT	Problem reformulation	AK-ECO 00000	Conclusion

Surge constraint :

$$\mathbb{E}_{X_{p}}\left[1 - \exp\left(-\sum_{j=1}^{7} e^{a_{Tpj}\left(b_{Tpj}(d, X_{p}, h_{s}^{j}, t_{p}^{j}, u^{j}) + \frac{\mu_{\mathrm{S}}(d, X_{p}, h_{s}^{j}, t_{p}^{j}, u^{j}) - 10}{\sigma_{\mathrm{S}}(d, X_{p}, h_{s}^{j}, t_{p}^{j}, u^{j})}}\right)\right)\right]$$
$$\mathbb{E}_{X_{p}}\left[1 - \exp\left(-\sum_{j=1}^{7} \exp\left(M(d, X_{p}, h_{s}^{j}, t_{p}^{j}, u^{j})\right)\right)\right]$$

From a space-filling design of experiments (DoE), calibration of a metamodel by **Gaussian process regression** or **Kriging**:

$$\widetilde{M}(d, x_p, h_s, t_p, u) \sim \mathcal{N}\left(\mu_M(d, x_p, h_s, t_p, u), \sigma_M(d, x_p, h_s, t_p, u)^2\right)$$

Industrial Case : FOWT 0000000	Problem reformulation	AK-ECO ○●○○○	Conclusion

Surge constraint :

$$\mathbb{E}_{X_p}\left[1 - \exp\left(-\sum_{j=1}^{7} e^{a_{T_p j}\left(b_{T_p j}(d, X_p, h_s^j, t_p^j, u^j) + \frac{\mu_{\mathrm{S}}(d, X_p, h_s^j, t_p^j, u^j) - 10}{\sigma_{\mathrm{S}}(d, X_p, h_s^j, t_p^j, u^j)}}\right)\right)\right]$$

$$\mathbb{E}_{X_p}\left[1 - \exp\left(-\sum_{j=1}^7 \exp\left(M(d, X_p, h_s^j, t_p^j, u^j)\right)\right)\right]$$

From a space-filling design of experiments (DoE), calibration of a metamodel by **Gaussian process regression** or **Kriging**:

$$\widetilde{M}(d, x_p, h_s, t_p, u) \sim \mathcal{N}\left(\mu_M(d, x_p, h_s, t_p, u), \sigma_M(d, x_p, h_s, t_p, u)^2\right)$$

Industrial Case : FOWT 0000000	Problem reformulation	AK-ECO ○●○○○	Conclusion

Surge constraint :

$$\mathbb{E}_{X_p}\left[1 - \exp\left(-\sum_{j=1}^{7} e^{a_{T_p j}\left(b_{T_p j}(d, X_p, h_s^j, t_p^j, u^j) + \frac{\mu_{\mathrm{S}}(d, X_p, h_s^j, t_p^j, u^j) - 10}{\sigma_{\mathrm{S}}(d, X_p, h_s^j, t_p^j, u^j)}}\right)\right)\right]$$

$$\mathbb{E}_{X_p}\left[1 - \exp\left(-\sum_{j=1}^7 \exp\left(M(d, X_p, h_s^j, t_p^j, u^j)\right)\right)\right]$$

From a space-filling design of experiments (DoE), calibration of a metamodel by **Gaussian process regression** or **Kriging**:

$$\widetilde{M}(d, x_p, h_s, t_p, u) \sim \mathcal{N}\left(\mu_M(d, x_p, h_s, t_p, u), \sigma_M(d, x_p, h_s, t_p, u)^2\right)$$

Industrial Case : FOWT 0000000	Problem reformulation	AK-ECO ○●○○○	Conclusion

Surge constraint :

$$\mathbb{E}_{X_p}\left[1 - \exp\left(-\sum_{j=1}^{7} e^{a_{T_p j}\left(b_{T_p j}(d, X_p, h_s^j, t_p^j, u^j) + \frac{\mu_{\mathrm{S}}(d, X_p, h_s^j, t_p^j, u^j) - 10}{\sigma_{\mathrm{S}}(d, X_p, h_s^j, t_p^j, u^j)}}\right)\right)\right]$$

$$\mathbb{E}_{X_p}\left[1 - \exp\left(-\sum_{j=1}^7 \exp\left(M(d, X_p, h_s^j, t_p^j, u^j)\right)\right)\right]$$

From a space-filling design of experiments (DoE), calibration of a metamodel by **Gaussian process regression** or **Kriging**:

$$\widetilde{M}(d, x_p, h_s, t_p, u) \sim \mathcal{N}\left(\mu_M(d, x_p, h_s, t_p, u), \sigma_M(d, x_p, h_s, t_p, u)^2\right)$$

Industrial Case : FOWT	Problem reformulation	AK-ECO 00000

Solving the RBDO problem: AK-ECO

Step 1: Initial design d^0 , initial metamodels and cycle = 1.

Step 2: local enrichment of metamodels:

 If *M*^{cycle-1} accurate enough around *d*^{cycle-1}
 Else: sequential local enrichment of *M*^{cycle-1} around *d*^{cycle-1}
 M^{cycle-1}
 M^{cycle}

- **Step 3:** solve the RBDO from design $d^{cycle-1}$.
 - optimization algorithm: Sequential Quadratic Approximation [6]
 - constraints evaluated through Monte Carlo applied on M^{cycle} .
 - Retrieve d^{cycle} .

Step 4:

- If cycle > 1, $||d^{cycle} d^{cycle-1}|| < \epsilon$ and \widetilde{M}^{cycle} accurate enough around d^{cycle} : the final minimum is d^{cycle} .
- Else: cycle = cycle + 1 and go back to step 2.

^[6] H. Langouët, Optimisation sans dérivées sous contraintes : deux applications industrielles en ingénierie de réservoir et en calibration des moteurs. PhD thesis, Université Nice Sophia Antipolis, 2011.

Solving the RBDO p	roblem: AK-ECO		
Industrial Case : FOW I 0000000	Problem reformulation		Conclusion
E C C C C C C C C C C C C C C C C C C C		114 500	G

- **Step 1:** Initial design d^0 , initial metamodels and cycle = 1.
- Step 2: local enrichment of metamodels:

 If *M*^{cycle-1} accurate enough around *d*^{cycle-1}
 Else: sequential local enrichment of *M*^{cycle-1} around *d*^{cycle-1}.
 M^{cycle-1} → *M*^{cycle}
- **Step 3:** solve the RBDO from design $d^{cycle-1}$
 - optimization algorithm: Sequential Quadratic Approximation [6]
 - constraints evaluated through Monte Carlo applied on \widetilde{M}^{cycle} .
 - Retrieve d^{cycle} .
- Step 4:
 - If cycle > 1, $||d^{cycle} d^{cycle-1}|| < \epsilon$ and \widetilde{M}^{cycle} accurate enough around d^{cycle} : the final minimum is d^{cycle} .
 - Else: cycle = cycle + 1 and go back to step 2.

^[6] H. Langouët, Optimisation sans dérivées sous contraintes : deux applications industrielles en ingénierie de réservoir et en calibration des moteurs. PhD thesis, Université Nice Sophia Antipolis, 2011.

Industrial Case : FOWT 0000000	Problem reformulation	AK-ECO 00000	Conclusion
Solving the RBDO prob	lem: AK-ECO		

- **Step 1:** Initial design d^0 , initial metamodels and cycle = 1.
- Step 2: local enrichment of metamodels:

 If *M̃*^{cycle-1} accurate enough around *d*^{cycle-1}
 Else: sequential local enrichment of *M̃*^{cycle-1} around *d*^{cycle-1}.
 M̃^{cycle-1} → *M̃*^{cycle}.
- **Step 3:** solve the RBDO from design $d^{cycle-1}$.
 - optimization algorithm: Sequential Quadratic Approximation [6]
 - constraints evaluated through Monte Carlo applied on \widetilde{M}^{cycle} .
 - Retrieve d^{cycle} .

Step 4:

- If cycle > 1, $||d^{cycle} d^{cycle-1}|| < \epsilon$ and \widetilde{M}^{cycle} accurate enough around d^{cycle} : the final minimum is d^{cycle} .
- Else: cycle = cycle + 1 and go back to step 2.

^[6] H. Langouët, Optimisation sans dérivées sous contraintes : deux applications industrielles en ingénierie de réservoir et en calibration des moteurs. PhD thesis, Université Nice Sophia Antipolis, 2011.

Industrial Case : FOWT 0000000	Problem reformulation	AK-ECO 00000	Conclusion
Solving the RBDO prob	lem: AK-ECO		

- **Step 1:** Initial design d^0 , initial metamodels and cycle = 1.
- Step 2: local enrichment of metamodels:

 If *M̃*^{cycle-1} accurate enough around *d*^{cycle-1}
 Else: sequential local enrichment of *M̃*^{cycle-1} around *d*^{cycle-1}.
 M̃^{cycle-1} → *M̃*^{cycle}.
- **Step 3:** solve the RBDO from design $d^{cycle-1}$.
 - optimization algorithm: Sequential Quadratic Approximation [6]
 - constraints evaluated through Monte Carlo applied on \widetilde{M}^{cycle} .
 - Retrieve d^{cycle} .

Step 4:

- If cycle > 1, $||d^{cycle} d^{cycle-1}|| < \epsilon$ and \widetilde{M}^{cycle} accurate enough around d^{cycle} : the final minimum is d^{cycle} .
- Else: cycle = cycle + 1 and go back to step 2.

^[6] H. Langouët, Optimisation sans dérivées sous contraintes : deux applications industrielles en ingénierie de réservoir et en calibration des moteurs. PhD thesis, Université Nice Sophia Antipolis, 2011.

Industrial Case : FOWT	Problem reformulation	AK-ECO	Conclusion
000000	0000000	00000	000

 $\widetilde{M}^{cycle}(d, x_p, h_s, t_p, u) \sim \mathcal{N}\left(\mu^{cycle}(d, x_p, h_s, t_p, u), \sigma^{cycle}(d, x_p, h_s, t_p, u)^2\right)$ Estimation of the surge constraint at d^{cycle} :

$$\frac{1}{N_{MC}}\sum_{i=1}^{N_{MC}}1 - \exp\left(-\sum_{j=1}^{7}\exp\left(\mu^{cycle}\left(d^{cycle}, x_p^i, h_s^j, t_p^j, u^j\right)\right)\right)$$
(1)

- 1. select x_p^i $(i \in \{1, \ldots, N_{MC}\})$ and h_s^j, t_p^j, u^j $(j = 1, \ldots, 7)$ that maximizes a **new criterion** specific to AK-ECO. This criterion favors points where the uncertainty of prediction σ^{cycle} implies big uncertainties on the MC estimation (1);
- 2. evaluate the response at this point (one code call);
- add the selected point and the corresponding response to the previous DoE;
- 4. recalibrate the metamodel.

Industrial Case : FOWT 0000000	Problem reformulation	AK-ECO 00000	Conclusion

$$\begin{split} \widetilde{M}^{cycle}(d,x_p,h_s,t_p,u) &\sim \mathcal{N}\left(\mu^{cycle}(d,x_p,h_s,t_p,u),\sigma^{cycle}(d,x_p,h_s,t_p,u)^2\right) \\ \text{Estimation of the surge constraint at } d^{cycle}: \end{split}$$

$$\frac{1}{N_{MC}}\sum_{i=1}^{N_{MC}}1 - \exp\left(-\sum_{j=1}^{7}\exp\left(\mu^{cycle}\left(d^{cycle}, x_p^i, h_s^j, t_p^j, u^j\right)\right)\right)$$
(1)

- 1. select x_p^i $(i \in \{1, ..., N_{MC}\})$ and h_s^j, t_p^j, u^j (j = 1, ..., 7) that maximizes a **new criterion** specific to AK-ECO. This criterion favors points where the uncertainty of prediction σ^{cycle} implies big uncertainties on the MC estimation (1);
- 2. evaluate the response at this point (one code call);
- add the selected point and the corresponding response to the previous DoE;
- 4. recalibrate the metamodel.

Industrial Case : FOWT 0000000	Problem reformulation	AK-ECO 00000	Conclusion

$$\begin{split} \widetilde{M}^{cycle}(d,x_p,h_s,t_p,u) &\sim \mathcal{N}\left(\mu^{cycle}(d,x_p,h_s,t_p,u),\sigma^{cycle}(d,x_p,h_s,t_p,u)^2\right) \\ \text{Estimation of the surge constraint at } d^{cycle}: \end{split}$$

$$\frac{1}{N_{MC}}\sum_{i=1}^{N_{MC}}1 - \exp\left(-\sum_{j=1}^{7}\exp\left(\mu^{cycle}\left(d^{cycle}, x_p^i, h_s^j, t_p^j, u^j\right)\right)\right)$$
(1)

- 1. select x_p^i $(i \in \{1, \ldots, N_{MC}\})$ and h_s^j, t_p^j, u^j $(j = 1, \ldots, 7)$ that maximizes a **new criterion** specific to AK-ECO. This criterion favors points where the uncertainty of prediction σ^{cycle} implies big uncertainties on the MC estimation (1);
- 2. evaluate the response at this point (one code call);
- add the selected point and the corresponding response to the previous DoE;
- 4. recalibrate the metamodel.

Industrial Case : FOWT 0000000	Problem reformulation	AK-ECO 00000	Conclusion

$$\begin{split} \widetilde{M}^{cycle}(d,x_p,h_s,t_p,u) &\sim \mathcal{N}\left(\mu^{cycle}(d,x_p,h_s,t_p,u),\sigma^{cycle}(d,x_p,h_s,t_p,u)^2\right) \\ \text{Estimation of the surge constraint at } d^{cycle}: \end{split}$$

$$\frac{1}{N_{MC}}\sum_{i=1}^{N_{MC}}1 - \exp\left(-\sum_{j=1}^{7}\exp\left(\mu^{cycle}\left(d^{cycle}, x_p^i, h_s^j, t_p^j, u^j\right)\right)\right)$$
(1)

- 1. select x_p^i $(i \in \{1, \ldots, N_{MC}\})$ and h_s^j, t_p^j, u^j $(j = 1, \ldots, 7)$ that maximizes a **new criterion** specific to AK-ECO. This criterion favors points where the uncertainty of prediction σ^{cycle} implies big uncertainties on the MC estimation (1);
- 2. evaluate the response at this point (one code call);
- add the selected point and the corresponding response to the previous DoE;
- 4. recalibrate the metamodel.

Industrial Case : FOWT 0000000	Problem reformulation	AK-ECO 00000	Conclusion

$$\begin{split} \widetilde{M}^{cycle}(d,x_p,h_s,t_p,u) &\sim \mathcal{N}\left(\mu^{cycle}(d,x_p,h_s,t_p,u),\sigma^{cycle}(d,x_p,h_s,t_p,u)^2\right) \\ \text{Estimation of the surge constraint at } d^{cycle}: \end{split}$$

$$\frac{1}{N_{MC}}\sum_{i=1}^{N_{MC}}1 - \exp\left(-\sum_{j=1}^{7}\exp\left(\mu^{cycle}\left(d^{cycle}, x_p^i, h_s^j, t_p^j, u^j\right)\right)\right)$$
(1)

- 1. select x_p^i $(i \in \{1, \ldots, N_{MC}\})$ and h_s^j, t_p^j, u^j $(j = 1, \ldots, 7)$ that maximizes a **new criterion** specific to AK-ECO. This criterion favors points where the uncertainty of prediction σ^{cycle} implies big uncertainties on the MC estimation (1);
- 2. evaluate the response at this point (one code call);
- add the selected point and the corresponding response to the previous DoE;
- 4. recalibrate the metamodel.

Industrial Case : FOWT 0000000	Problem reformulation	AK-ECO 00000	Conclusion

$$\begin{split} \widetilde{M}^{cycle}(d,x_p,h_s,t_p,u) &\sim \mathcal{N}\left(\mu^{cycle}(d,x_p,h_s,t_p,u),\sigma^{cycle}(d,x_p,h_s,t_p,u)^2\right) \\ \text{Estimation of the surge constraint at } d^{cycle}: \end{split}$$

$$\frac{1}{N_{MC}}\sum_{i=1}^{N_{MC}}1 - \exp\left(-\sum_{j=1}^{7}\exp\left(\mu^{cycle}\left(d^{cycle}, x_p^i, h_s^j, t_p^j, u^j\right)\right)\right)$$
(1)

- 1. select x_p^i $(i \in \{1, \ldots, N_{MC}\})$ and h_s^j, t_p^j, u^j $(j = 1, \ldots, 7)$ that maximizes a **new criterion** specific to AK-ECO. This criterion favors points where the uncertainty of prediction σ^{cycle} implies big uncertainties on the MC estimation (1);
- 2. evaluate the response at this point (one code call);
- add the selected point and the corresponding response to the previous DoE;
- 4. recalibrate the metamodel.

Industrial Case : FOWT	Problem reformulation	AK-ECO	Conclusion
000000	0000000	0000	000

Comparaison of AK-ECO with reference methods in RBDO

Results of the different methods with $d^0 = (-1.07, 138.9, 0.07)$:

	MC+KM1600	SORA[7]	Stieng[8]	AK-ECO
d^{min}	(1.11, 110.45, 0)	(-0.2, 101.2, 0)	(-1.99, 86.6, 0)	(1.05, 109.96, 0)
$cost(d^{min})$	0.262	0.201	0.104	0.259
$p_{\mathcal{S}}(d^{min})$	1.0×10^{-4}	0.9×10^{-4}	0.66	1.0×10^{-4}
$p_{\mathcal{F}}^{line_3}(d^{min})$	1.0×10^{-4}	2.6×10^{-4}	14.2×10^{-4}	1.0×10^{-4}
N_{calls}	1600	24983	4557	456

• AK-ECO finds a reliable optimum with few calls to the expensive code.

^[7] X. Du and W. Chen, Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design, Journal of Mechanical Design, 2004

^[8] Lars Einar S. Stieng. Optimal design of offshore wind turbine support structures under uncertainty. PhD thesis, Norwegian University of Science and Technology, 2019.

Industrial Case : FOWT	Problem reformulation	AK-ECO	Conclusion		
000000	0000000	00000	•00		
Table of contents					

1 Industrial Case : floating offshore wind turbine

2 Problem reformulation

3 AK-ECO

Conclusion						
000000	0000000	00000	000			
Industrial Case : FOWT	Problem reformulation	AK-ECO	Conclusion			

- Optimization problem with probabilistic constraints dependent on a random vector and a piecewise stationary stochastic Gaussian process.
- Methodology in two parts:
 - Reformulate the problem thanks to extreme value theory and the Dirlik approach;
 - Solve the reformulated problem with a **new adaptive kriging** strategy **AK-ECO** and a **new learning criterion**.
- Successful application of the methodology to the academic case of a harmonic oscillator and to the wind turbine case.
- Perspective: quantify the approximation errors made during the reformulation steps.

Industrial Case : FOWT 0000000	Problem reformulation	AK-ECO 00000	Conclusion
References			

B. Echard, N. Gayton and M. Lemaire. AK-MCS: An active learning reliability method combining Kriging and Monte Carlo Simulation Structural Safety, 33(2): 145-154, 2011.

V. Dubourg.

Adaptive surrogate models for reliability analysis and reliability-based design optimization

Phd Thesis, 2011.

M. Moustapha and B. Sudret.

Surrogate-assisted reliability-based design optimization: a survey and a new general framework

Structural and Multidisciplinary Optimization, 60(5): 2157-2176, 2019.

Appendix 0

Appendix : enrichment criterion

$$\begin{split} \max_{i \in \{1,...,N_{MC}\}, j \in \{1,...,7\}} \mathcal{C}_{aug}(d, x_{p}^{i}, h_{s}^{j}, t_{p}^{j}, u^{j}) & \text{where} \quad \mathcal{C}_{aug}(d, x_{p}^{i}, h_{s}^{j}, t_{p}^{j}, u^{j}) \\ &= \left[F_{5} \left(\sum_{j' \neq j} \exp\left(\mu(d, x_{p}^{i}, h_{s}^{j'}, t_{p}^{j'}, u^{j'}) \right) \\ & + \exp\left(\left(\mu(d, x_{p}^{i}, h_{s}^{j}, t_{p}^{j}, u^{j}) \right) + 2\sigma(d, x_{p}^{i}, h_{s}^{j}, t_{p}^{j}, u^{j}) \right) \right) \\ &- F_{5} \left(\sum_{j' \neq j} \exp\left(\mu(d, x_{p}^{i}, h_{s}^{j'}, t_{p}^{j'}, u^{j'}) \right) \\ & + \exp\left(\left(\mu(d, x_{p}^{i}, h_{s}^{j}, t_{p}^{j}, u^{j}) \right) - 2\sigma(d, x_{p}^{i}, h_{s}^{j}, t_{p}^{j}, u^{j}) \right) \right) \end{split}$$

 $\times f_{X_p}(x_p^i)$ $F_5(x) = 1 - \exp(-x)$