CLIMATE EXTREME EVENT ATTRIBUTION and MULTIVARIATE EXTREME VALUE THEORY

philippe.naveau@lsce.ipsl.fr

Joint work with Anna Kiriliouk, Julien Worms, Soulivanh Thao, Alexis Hannart and Aurélien Ribes.

Outline

Climate models and Detection & Attribution (D&A)

Concepts

Extremes and attribution

Multivariate extreme value theory

The statistical setup

Return level u_T for the time period T

$$\mathbb{P}(X > u_T) = \frac{1}{T}$$

Return level u_T for the time period T

$$\mathbb{P}(X > u_T) = \frac{1}{T}$$

Return period for a weighted sum

$$\mathbb{P}(\omega_1 X_1 + \omega_2 X_2 > u_T) = \frac{1}{?}$$
with $\mathbb{P}(X_1 > u_T) = \mathbb{P}(X_2 > u_T) = \frac{1}{T}$

Return period for a weighted sum

$$\mathbb{P}(\omega_1 X_1 + \omega_2 X_2 > u_T) = \frac{1}{2}$$

with X_i unit exponentials and $u_T = \log T$

	T = 10	T = 50	T = 100
Complete dependence	10	50	100

Return period for a weighted sum

$$\mathbb{P}(\omega_1 X_1 + \omega_2 X_2 > u_T) = \frac{1}{2}$$

with X_i unit exponentials and $u_T = \log T$

$w_1 = w_2 = 0.5$		
T = 10	T = 50	T = 100
10	50	100
19	96	191
	$\overline{T = 10}$ 10 19	$\begin{tabular}{ccc} $w_1 = w_2 = 0.5$ \\ \hline $T = 10$ & $T = 50$ \\ \hline 10 & 50 \\ 19 & 96 \\ \hline \end{tabular}$

Return period for a weighted sum

$$\mathbb{P}(\omega_1 X_1 + \omega_2 X_2 > u_T) = \frac{1}{2}$$

with X_i unit exponentials and $u_T = \log T$

	$w_1 = w_2 = 0.5$		
	T = 10	T = 50	T = 100
Complete dependence	10	50	100
Intermediate dependence (MGPD)	19	96	191
Independence	18	283	979

	$w_1 = w_2 = 0.5$		
	T = 10	T = 50	T = 100
Complete dependence	10	50	100
Intermediate dependence (MGPD)	19	96	191
Independence	18	283	979
	$w_1 = 0.2, w_2 = 0.8$		
	T = 10	T = 50	T = 100
Complete dependence	10	50	100
Intermediate dependence (MGPD)	18	88	175
Independence	13	100	237

Learned lesson

Given identically distributed univariate variables with the same return level u_T , the **degree of dependence** in the original data and the **weights** greatly influence the return period of the event $\{\omega_1 X_1 + \omega_2 X_2 > u_T\}$

The climatological setup

Attribution

Evaluating the relative contributions of multiple causal factors¹ to a change or event with an assignment of statistical confidence.

Consequences

Need to assess whether the observed changes are

- consistent with the expected responses to external forcings (PS)
- inconsistent with alternative explanations (PN)

^{1.} casual factors usually refer to external influences, which may be anthropogenic (GHGs, aerosols, ozone precursors, land use) and/or natural (volcanic eruptions, solar cycle modulations

Factual world

Counterfactual world

Counterfactual and factual world in a probabilistic framework

Fraction of Attributable Risk (FAR)

Relative ratio of two probabilities, p_0 the probability of exceeding a threshold in a "world that might have been (no antropogenic forcings)" and p_1 the probability of exceeding the same threshold in a "world that it is"

$$FAR = 1 - rac{p_0}{p_1}$$

(see Stott P. A., Stone D. A., Allen M. R. (2004). Human contribution to the European heatwave of 2003. Nature)

FAR is linked with Pearl counter-factual theory

Hannart, Pearl, Otto, PN and Ghil. Counterfactual causality theory for the attribution of weather and climate-related events, BAMS, 2015 PN, Hannart and Ribes, Statistical Methods for Extreme Event Attribution in Climate Science, Annual Rev. of Stat. and Its Appli., 2020

FAR is linked with Pearl counter-factual theory

Hannart, Pearl, Otto, PN and Ghil. Counterfactual causality theory for the attribution of weather and climate-related events, BAMS, 2015 PN, Hannart and Ribes, Statistical Methods for Extreme Event Attribution in Climate Science, Annual Rev. of Stat. and Its Appli., 2020

Causality cheat sheet Necessary causation = PN = $FAR = \max\left(1 - \frac{p_0}{p_1}, 0\right)$, Sufficient causation = PS = $\max\left(1 - \frac{1 - p_1}{1 - p_0}, 0\right)$, Both causation = PNS = $\max\left(p_1 - p_0, 0\right)$, where p_0 proba in the counterfactual world & p_1 in the factual one

Gaussian example with $p_0 = P(X > u)$ and $p_1 = P(Z > u)$

Gaussian case with $X \sim N(0, 1), Z \sim N(1, 1.5)$

Another example : the Generalized Pareto Distribution (GP) survival function

$$\overline{H}_{\gamma}(x/\sigma) = \left(1 + \frac{\gamma x}{\sigma}\right)_{+}^{-1/\gamma}$$

Vilfredo Pareto : 1848-1923

Born in France and trained as an engineer in Italy, he turned to the social sciences and ended his career in Switzerland. He formulated the power-law distribution (or "Pareto's Law"), as a model for how income or wealth is distributed across society.

see, e.g. Statistics of Extremes A.C. Davison and R. Huser Annual Review of Statistics and Its Application 2015 2 :1, 203-235

From Bounded ($\gamma < 0$) to Heavy tails ($\gamma > 0$)

Examples with $p_0 = P(X > u)$ and $p_1 = P(Z > u)$

Moving to multivariate extremes

The Annals of Applied Statistics 2020, Vol. 14, No. 3, 1342–1358 https://doi.org/10.1214/20-AOAS1355 © Institute of Mathematical Statistics, 2020

CLIMATE EXTREME EVENT ATTRIBUTION USING MULTIVARIATE PEAKS-OVER-THRESHOLDS MODELING AND COUNTERFACTUAL THEORY

By ANNA ${\rm Kiriliouk}^1$ and ${\rm Philippe}\;{\rm Naveau}^2$

Univariate modelling strategy:

- Fix some high threshold *u*.
- Fit a GPD to the conditional threshold excesses

 $Y-u \mid Y > u.$

Multivariate modelling strategy:

- Fix some high threshold **u**.
- Fit a multivariate GPD to the conditional threshold excesses
 Y − u | Y ≤ u.

Multivariate generalized Pareto definition

Simulation

$$\mathbf{V}_{\gamma=0} \stackrel{\mathrm{d}}{=} E + \mathbf{T} - \max_{1 \leq j \leq d} T_j,$$

where $E \sim \text{Exp}(1)$ and **T** a *d*-dimensional r.v., $\perp E$.

Multivariate generalized Pareto definition

Simulation

$$\mathbf{V}_{\gamma=0} \stackrel{\mathrm{d}}{=} E + \mathbf{T} - \max_{1 \leq j \leq d} T_j,$$

where $E \sim \text{Exp}(1)$ and **T** a *d*-dimensional r.v., $\perp E$.

Exponential conditional marginals

$$\mathbb{P}[V_i > z | V_i > 0] = \exp(-z)$$

Multivariate generalized Pareto definition

Simulation

$$\mathbf{V}_{\gamma=0} \stackrel{\mathrm{d}}{=} \boldsymbol{E} + \mathbf{T} - \max_{1 \leq i \leq d} T_j,$$

where $E \sim \text{Exp}(1)$ and **T** a *d*-dimensional r.v., $\perp E$.

Different marginals

Every MGP vector has a representation on $\{\mathbf{v} \in \mathbb{R}^d : \mathbf{v} \leq \mathbf{0}\}$ as

$$\mathbf{V} \stackrel{\mathrm{d}}{=} \sigma \frac{\mathbf{e}^{\gamma \, \mathbf{V}_{\gamma=0}} - \mathbf{1}}{\gamma}$$

and

$$\mathbb{P}[V_j > v \mid V_j > 0] = (1 + \gamma_j v / \sigma_j)_+^{-1/\gamma_j},$$

MGPD simulated samples with density contours

FIG. 1. Scatterplots and density contours from 500 bivariate GPD random draws using (2 parameters $\boldsymbol{\gamma} = (0.3, 0), \boldsymbol{\sigma} = (1, 1)$ for the left panel and $\boldsymbol{\gamma} = (0, 0), \boldsymbol{\sigma} = (2, 1)$ for the right part *T* is zero-mean bivariate Gaussian with unit covariance matrix I_2 .

Theoretical justification

Let $\mathbf{Y} \in \mathbb{R}^d$ and $\mathbf{Y}_i = (Y_{i1}, \dots, Y_{id}), i \in \{1, \dots, n\}, n \text{ iid copies of } \mathbf{Y}$. Let $\mathbf{M}_n := (M_{n,1}, \dots, M_{nd})$ with $M_{nj} := \max(Y_{1j}, \dots, Y_{nj})$

Max-domain of attraction

$$\mathbb{P}\left[\frac{\mathbf{M}_n - \mathbf{b}_n}{\mathbf{a}_n} \le \mathbf{x}\right] = \mathbb{P}^n \left(\mathbf{Y} \le \mathbf{a}_n \mathbf{x} + \mathbf{b}_n\right) \xrightarrow{d} MGEV(\mathbf{x}), \quad \text{as } n \to \infty.$$
(1)

Theoretical justification

Let $\mathbf{Y} \in \mathbb{R}^d$ and $\mathbf{Y}_i = (Y_{i1}, \dots, Y_{id}), i \in \{1, \dots, n\}, n \text{ iid copies of } \mathbf{Y}$. Let $\mathbf{M}_n := (M_{n,1}, \dots, M_{nd})$ with $M_{nj} := \max(Y_{1j}, \dots, Y_{nj})$

Max-domain of attraction

$$\mathbb{P}\left[\frac{\mathbf{M}_n - \mathbf{b}_n}{\mathbf{a}_n} \le \mathbf{x}\right] = \mathbb{P}^n \left(\mathbf{Y} \le \mathbf{a}_n \mathbf{x} + \mathbf{b}_n\right) \xrightarrow{d} MGEV(\mathbf{x}), \qquad \text{as } n \to \infty.$$
(1)

Multivariate Generalized Pareto (GP) r.v. (Rootzen & Tajvidi, 2006)

Let $I = (l_1, ..., l_d)$ the lower endpoints vector of *G*. If (1) holds,

$$\max\left\{\frac{\mathbf{Y}-\mathbf{b}_n}{\mathbf{a}_n},\mathbf{I}\right\}\mid\mathbf{Y}\not\leq\mathbf{b}_n\stackrel{d}{\rightarrow}\mathbf{V},\qquad\text{as }n\rightarrow\infty,$$

where V is said to follow a multivariate GP distribution with cdf H.

Multivariate generalized Pareto properties

	$w_1 = w_2 = 0.5$		
	T = 10	T = 50	T = 100
Complete dependence	10	50	100
Intermediate dependence (MGPD)	19	96	191
Independence	18	283	979
	$w_1 = 0.2, w_2 = 0.8$		
	T = 10	T = 50	T = 100
Complete dependence	10	50	100
Intermediate dependence (MGPD)	18	88	175
Independence	13	100	237

Multivariate generalized Pareto properties

	$w_1 = w_2 = 0.5$		
	T = 10	T = 50	T = 100
Complete dependence	10	50	100
Intermediate dependence (MGPD)	19	96	191
Independence	18	283	979
		$w_1 = 0.2, w_2 = 0.8$	
	T = 10	T = 50	T = 100
Complete dependence	10	50	100
Intermediate dependence (MGPD)	18	88	175
Independence	13	100	237

Linear projection (Rootzen et al. 2016)

If $\gamma = \gamma \mathbf{1}$, then for any weights $\mathbf{w} = (w_1, \dots, w_d) > \mathbf{0}$ such that $\mathbb{P}[\mathbf{w}^T \mathbf{V} > \mathbf{0}] > \mathbf{0}$,

 $\mathbf{w}^{\mathsf{T}}\mathbf{V} \mid \mathbf{w}^{\mathsf{T}}\mathbf{V} > \mathbf{0} \sim \mathsf{GP}(\mathbf{w}^{\mathsf{T}}\sigma,\gamma).$

MGPD and maximizing causality

Causality cheat sheet

$$\begin{split} \mathsf{PN} &= \mathit{FAR} = \max\left(1 - \frac{p_0}{p_1}, 0\right),\\ \mathsf{PS} &= \max\left(1 - \frac{1 - p_1}{1 - p_0}, 0\right),\\ \mathsf{PNS} &= \max\left(p_1 - p_0, 0\right), \end{split}$$

where p_0 proba in the counterfactual world & p_1 in the factual one

Causality cheat sheet

$$PN = FAR = \max\left(1 - \frac{p_0}{p_1}, 0\right),$$
$$PS = \max\left(1 - \frac{1 - p_1}{1 - p_0}, 0\right),$$
$$PNS = \max\left(p_1 - p_0, 0\right),$$

where p_0 proba in the counterfactual world & p_1 in the factual one

Optimal projection that maximizes PN

Find weights $\mathbf{w} \in {\{\mathbf{w} \in [0, 1]^d : w_1 + \dots + w_d = 1\}}$ that maximizes

$$\mathsf{PN}(\boldsymbol{v}, \boldsymbol{w}) = \max\left(1 - \frac{\mathbb{P}[\boldsymbol{w}^T \boldsymbol{X}^{(0)} > \boldsymbol{v}]}{\mathbb{P}[\boldsymbol{w}^T \boldsymbol{X}^{(1)} > \boldsymbol{v}]}, \mathbf{0}\right).$$

Optimal projection that maximizes PN

Find weights $\mathbf{w} \in {\{\mathbf{w} \in [0, 1]^d : w_1 + \dots + w_d = 1\}}$ that maximizes

$$\mathsf{PN}(\boldsymbol{\nu}, \boldsymbol{w}) = \max\left(1 - \frac{\mathbb{P}[\boldsymbol{w}^T \boldsymbol{X}^{(0)} > \boldsymbol{\nu}]}{\mathbb{P}[\boldsymbol{w}^T \boldsymbol{X}^{(1)} > \boldsymbol{\nu}]}, 0\right).$$

Homegeneous case with $\overline{\gamma = \gamma \mathbf{1}_d}$

$$\mathbb{P}[\mathbf{w}^{T}\mathbf{X} > \mathbf{v}] = \mathbb{P}[\mathbf{w}^{T}\mathbf{X} > \mathbf{w}^{T}\mathbf{u}] \mathbb{P}[\mathbf{w}^{T}(\mathbf{X} - \mathbf{u}) > \mathbf{v} - \mathbf{w}^{T}\mathbf{u} \mid \mathbf{w}^{T}(\mathbf{X} - \mathbf{u}) > 0]$$

$$\approx \mathbb{P}\left[\mathbf{w}^{T}\mathbf{X} > \mathbf{w}^{T}\mathbf{u}\right] \overline{H}\left(\mathbf{v} - \mathbf{w}^{T}\mathbf{u}; \mathbf{w}^{T}\sigma, \gamma\right),$$

Necessary gain from univariate to multivariate analysis (equal weights but different dependence strengths)

Multivariate PN – univariate PN

FIG. 6. Boxplots of the multivariate estimates $\widehat{PN} = 1 - \widehat{p}_0/\widehat{p}_1$ minus the univariate PN estimates of aggregated data, where \widehat{p}_i is defined in (4.4), and $d \in \{2, ..., 9\}$. 1000 samples of size n = 2000 were simulated from a multivariate Gaussian GPD model with $\boldsymbol{\sigma}^{(0)} = \boldsymbol{\sigma}^{(1)} = 1$ and $\boldsymbol{\gamma}^{(0)} = \boldsymbol{\gamma}^{(1)} = 0$, $\chi^{(0)} \in [0.3, 0.4]$ and $\chi^{(1)} \in [0.4, 0.55]$ (pairwise). The black line corresponds to the true values.

Necessary gain from univariate to bivariate analysis (equal dependence but different weights)

FIG. 5. Necessary causation gain for $\mathbf{X}^{(0)} \stackrel{d}{=} \mathbf{Z}^{(0)} \sim \text{MGPD}(\mathbf{T}^{(0)}, (1, 2)^T, \gamma \mathbf{1}_d)$ and $\mathbf{X}^{(1)} \stackrel{d}{=} \mathbf{Z}^{(1)} \sim \text{MGPD}(\mathbf{T}^{(1)}, (1.5, 2)^T, \gamma \mathbf{1}_d)$, where $\mathbf{T}^{(1)}, \mathbf{T}^{(0)}$ are Gaussian random vectors such that $\chi^{(0)} = \chi^{(1)} = 0.5$. The ratio of PN($v, (w_{\text{opt}}, 1 - w_{\text{opt}})^T$) to PN($v, (0.5, 0.5)^T$) is shown as a function of v, where $w_{\text{opt}} = 1$ based on Proposition 4.1. The dashed, solid and dotted lines correspond to a shape parameter (with constraint $\gamma^{(0)} = \gamma^{(1)}$) of -0.4, 0 and 0.4, respectively.

Climate model (CNRM)

FIG. 7. Clustering of weekly maximum winter precipitation in central Europe between January 1985 and August 2014, using the PAM algorithm with distance based on pairwise tail dependence coefficients.

Weights influence

Weights influence

Projection $\mathbf{w}^T \mathbf{V}^{(i)}$ with $\mathbf{V}_{\gamma=0} = \mathbf{E} + \mathbf{T} - \max_{1 \le j \le d} T_j$

$$\mathbb{P}[\mathbf{w}^{T}\mathbf{V} > \mathbf{v}] = \frac{1}{(\gamma \mathbf{v} + \mathbf{w}^{T}\sigma)^{1/\gamma}} \mathbb{E}\left[\left(\sum_{j=1}^{d} w_{j}\sigma_{j}e^{\gamma(T_{j} - \max(\mathbf{T}))}\right)^{1/\gamma}\right] \text{ if } \gamma \neq \mathbf{0},$$

Projection $\mathbf{w}^T \mathbf{V}^{(i)}$ with $\mathbf{V}_{\gamma=0} = E + \mathbf{T} - \max_{1 \le j \le d} T_j$ with $\gamma = 1$

If **T** a bivariate normal r.v. with $Var(T_i) = 1 \& Cor(T_1, T_2) = \rho$, then

$$\mathbb{P}[\mathbf{w}^{\mathsf{T}}\mathbf{V} > \mathbf{v}] = \frac{\mathbf{w}^{\mathsf{T}}\sigma}{\mathbf{v} + \mathbf{w}^{\mathsf{T}}\sigma} \left\{ e^{1-\rho} \Phi\left(-\sqrt{2(1-\rho)}\right) + \frac{1}{2} \right\}$$

Projection $\mathbf{w}^T \mathbf{V}^{(i)}$ with $\mathbf{V}_{\gamma=0} = \mathbf{E} + \mathbf{T} - \max_{1 \le j \le d} T_j$ with $\gamma = 1$

If **T** a bivariate normal r.v. with $Var(T_i) = 1 \& Cor(T_1, T_2) = \rho$, then

$$\mathbb{P}[\mathbf{w}^{T}\mathbf{V} > \mathbf{v}] = \frac{\mathbf{w}^{T}\sigma}{\mathbf{v} + \mathbf{w}^{T}\sigma} \left\{ e^{1-\rho}\Phi\left(-\sqrt{2(1-\rho)}\right) + \frac{1}{2} \right\}$$

PNS

$$PNS(v, \mathbf{w}) = c_1 \frac{\mathbf{w}^T \sigma^{(1)}}{v + \mathbf{w}^T \sigma^{(1)}} - c_0 \frac{\mathbf{w}^T \sigma^{(0)}}{v + \mathbf{w}^T \sigma^{(0)}}$$

with $c_i = e^{1 - \rho^{(i)}} \Phi\left(-\sqrt{2(1 - \rho^{(i)})}\right) + \frac{1}{2}$

Projection $\mathbf{w}^T \mathbf{V}^{(i)}$ with $\mathbf{V}_{\gamma=0} = \mathbf{E} + \mathbf{T} - \max_{1 \le j \le d} T_j$ with $\gamma = 1$

If **T** a bivariate normal r.v. with $Var(T_i) = 1 \& Cor(T_1, T_2) = \rho$, then

$$\mathbb{P}[\mathbf{w}^{\mathsf{T}}\mathbf{V} > \mathbf{v}] = \frac{\mathbf{w}^{\mathsf{T}}\sigma}{\mathbf{v} + \mathbf{w}^{\mathsf{T}}\sigma} \left\{ e^{1-\rho} \Phi\left(-\sqrt{2(1-\rho)}\right) + \frac{1}{2} \right\}$$

PNS

$$PNS(v, \mathbf{w}) = c_1 \frac{\mathbf{w}^T \sigma^{(1)}}{v + \mathbf{w}^T \sigma^{(1)}} - c_0 \frac{\mathbf{w}^T \sigma^{(0)}}{v + \mathbf{w}^T \sigma^{(0)}}$$
with $c_i = e^{1-\rho^{(i)}} \Phi\left(-\sqrt{2(1-\rho^{(i)})}\right) + \frac{1}{2}$

Maximizing PNS with respect to v

$$\boldsymbol{\nu}^* = \frac{(\mathbf{w}^T \sigma^{(0)})(\mathbf{w}^T \sigma^{(1)}) + \sqrt{(\mathbf{w}^T \sigma^{(0)})(\mathbf{w}^T \sigma^{(1)})c_0c_1}}{c_1(\mathbf{w}^T \sigma^{(1)}) - c_0(\mathbf{w}^T \sigma^{(0)})}$$

Also explicit expressions for maximizing PNS with respect to w, but particularly ugly

Example : $\gamma = 1$ and $V_{\gamma=0} = E + T - \max_{1 \le j \le d} T_j$ with T a bivariate normal

Figure 4: PN, PS and PNS for $\gamma = 1$ and $\sigma^{(0)} = (1, 0.6)$, for $\sigma^{(1)} = (2, 0.7)$ (left), $\sigma^{(1)} = (2, 0.9)$ (middle) and $\sigma^{(1)} = (2, 1.1)$ (right), for w = 1/2 (solid lines) and $w = w_{\text{PNS}}^*$ (dashed lines). The dependence structure is as in Example 2.2 with a correlation of 0.3 in the factual world and 0.4 in the counterfactual world.

Example : $\gamma = 0$ and $V_{\gamma=0} = E + T - \max_{1 \le j \le d} T_j$ with T a bivariate normal

Figure 3: PN, PS and PNS for $\gamma = 0$ and $\boldsymbol{\sigma}^{(0)} = (1, 0.6)$, for $\boldsymbol{\sigma}^{(1)} = (2, 0.7)$ (left), $\boldsymbol{\sigma}^{(1)} = (2, 0.9)$ (middle) and $\boldsymbol{\sigma}^{(1)} = (2, 1.1)$ (right), for w = 1/2 (solid lines) and $w = w_{\rm PN}^*$ (dashed lines). The dependence structure is as in Example 2.2 with a correlation of 0.3 in the factual world and 0.4 in the counterfactual world.

Conclusions

Main messages

- Interesting links between Extreme Value Theory and Causality Theory in attributing climate extremes
- Multivariate Pareto projections can be optimized with respect to causation criteria
- In climate studies, this can help contrasting the impact of anthropogenic effect

Future work on difference sources of error and/or uncertainty in D&A

- Natural climate internal variability
- Natural forcing variations
- Model uncertainty from approximating the true climate system with numerical experiments
- Observational uncertainties due to instrumental errors, homogenization problems and mismatches between data sources
- Sampling uncertainty in space and time
- Statistical modeling error by assuming a specific statistical model, e.g., assuming a generalized extreme value distribution for independent block maxima.
- Inferential uncertainties

PhD ad on "Development of machine learning methods to combine multi-model biases in studies of detection and attribution of climatic extremes" (contact me).

The cornerstone of causality: counterfactual definition

• D. Hume, An Enquiry Concerning Human Understanding,1748

« We may define a cause to be an object followed by another, where, if the first object had not been, the second never had existed. »

D. K. Lewis, Counterfactuals, 1973

« We think of a cause as something that makes a difference, and the difference it makes must be a difference from what would have happened without it. Had it been absent, its effects would have been absent as well. »

D. Hume, 18th century

D. Lewis, 20th century

see, e.g. Hannart, A., Pearl J. Otto F., P. Naveau and M. Ghil. (BAMS, 2015). Counterfactual causality theory for the attribution of weather

Consolidation of a standard causality theory (1980-1990)

- Common theoretical corpus on causality
 - what does «X causes Y» mean ?
 - how does one evidence a causality link from data ?
 - philosophy, artificial intelligence, statistics.
 - statistics alone not enough more concepts needed.
- J. Pearl (2000), *Causality: models,* reasoning and inference, Cambridge University Press.
- Turing Award 2004.

• Provides clear semantics and sound logic for causal reasoning.

 $\operatorname{Cor}(\mathit{T}_1\,,\,\mathit{T}_2)=$ 0.4, with $\gamma=$ **0** (left) and $\gamma=$ (0.2, 0.2) (right)

Oriented graphs

 visual representation of the conditional independence structure of a joint distribution

 $P(X, Y, Z, W) = P(W) \cdot P(X | W) \cdot P(Y | W) \cdot P(Z | Y)$

Interventional probability

- Limitation of oriented graphs
 - identifiability: several causal graphs are compatible with the same pdf (and hence with the same observations).

$$P(X,Y) = P(X) \cdot P(Y \mid X) = P(Y) \cdot P(X \mid Y)$$

$$\downarrow$$

$$\downarrow$$

$$X \to Y$$

$$Y \to X$$

Need for disambiguation.

Interventional probability

- New notion:
 - intervention do(X=x)
 - interventional probability $P(Y \mid do(X=x)) = P(Y_x)$

the probability of rain **forcing** the barometer to decrease, in an experimental context in which the barometer is manipulated

$$P(Y \mid do(X = x)) \neq P(Y \mid X = x)$$

the probability of rain <u>knowing</u> that the barometer is decreasing, in a non-experimental context in which the barometer evolution is left unconstrained

Causal theory (Pearl): causality has two facets

Source : A. Hannart & PN, Journal of Climate, 2018

Causal theory (Pearl): Probabilities of causation

• **Probability of necessary causation** = probability that the effect is removed when the cause is turned off, conditional on the fact that the effect and the cause were initially present.

Source : A. Hannart & PN, Journal of Climate, 2018

Causal theory (Pearl): Probabilities of causation

• **Probability of sufficient causation** = probability that the effect appears when the cause is turned on, conditional on the fact that the effect and the cause were initially absent.

Source : A. Hannart & PN, Journal of Climate, 2018

Fundamental difference : necessary and sufficient causation

Definitions:

- "X is a necessary cause of Y" means that X is required for Y to occur but that other factors might be required as well.
- "X is a sufficient cause of Y" means that X always triggers Y but that Y may also occur for other reasons without requiring X.

Examples:

- clouds are a necessary cause of rain but not a sufficient one.
- rain is a sufficient cause for the road being wet, but not a necessary one.

Fundamental difference : necessary and sufficient causation

- Definitions:
 - Probability of necessary causality = PN = the probability that the event Y would not have occurred in the absence of the event X given that both events Y and X did in fact occur.
 - Probability of sufficient causation = PS have occurred in the presence of X, given that Y and X did not occur.
- Formalization:

$$\begin{cases} \mathsf{PN} =_{\mathsf{def}} P(Y_0 = 0 \mid Y = 1, X = 1) \\ \mathsf{PS} =_{\mathsf{def}} P(Y_1 = 1 \mid Y = 0, X = 0) \\ \mathsf{PNS} =_{\mathsf{def}} P(Y_0 = 0, Y_1 = 1) \end{cases}$$