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The statistical setup



Return level uT for the time period T

P(X > uT ) =
1
T

Return period for a weighted sum

P(ω1X1 + ω2X2 > uT ) =
1
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with P(X1 > uT ) = P(X2 > uT ) = 1
T
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Learned lesson

Given identically distributed univariate variables with the same return
level uT , the degree of dependence in the original data and the
weights greatly influence the return period of the event
{ω1X1 + ω2X2 > uT}



The climatological setup



Detection & Attribution

Attribution
Evaluating the relative contributions of multiple causal factors 1 to a change or
event with an assignment of statistical confidence.

Consequences
Need to assess whether the observed changes are

consistent with the expected responses to external forcings (PS)

inconsistent with alternative explanations (PN)

1. casual factors usually refer to external influences, which may be anthropogenic (GHGs,
aerosols, ozone precursors, land use) and/or natural (volcanic eruptions, solar cycle modulations



Event attribution - methodological proposal

! Step 2 & 3: causal graph + monotonicity and exogeneity.



Factual world
Event attribution - methodological proposal

! Step 2 & 3: causal graph.

factual run:
«!HIST!»



Counterfactual worldEvent attribution - methodological proposal

! Step 2 & 3: causal graph.

counterfactual run
w.r.t. 

anthropogenic forcing:
«!NAT!»



Counterfactual and factual world in a probabilistic framework



The so-called event attribution scheme

Fraction of Attributable Risk (FAR)
Relative ratio of two probabilities, p0 the probability of exceeding a threshold
in a “world that might have been (no antropogenic forcings)" and p1 the
probability of exceeding the same threshold in a “world that it is"

FAR = 1− p0

p1
.

(see Stott P. A., Stone D. A., Allen M. R. (2004). Human contribution to the European heatwave of 2003. Nature)



FAR is linked with Pearl counter-factual theory

Hannart, Pearl, Otto, PN and Ghil. Counterfactual causality theory for the attribution of weather and climate-related events, BAMS, 2015

PN, Hannart and Ribes, Statistical Methods for Extreme Event Attribution in Climate Science, Annual Rev. of Stat. and Its Appli., 2020

Causality cheat sheet

Necessary causation = PN = FAR = max

(
1− p0

p1
, 0
)
,

Sufficient causation = PS = max

(
1− 1− p1

1− p0
, 0
)
,

Both causation = PNS = max (p1 − p0, 0) ,

where p0 proba in the counterfactual world & p1 in the factual one
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Gaussian example with p0 = P(X > u) and p1 = P(Z > u)



Another example : the Generalized Pareto Distribution (GP) survival function

Hγ(x/σ) =
(

1 +
γ x
σ

)−1/γ

+

Vilfredo Pareto : 1848-1923

Born in France and trained as an
engineer in Italy, he turned to the
social sciences and ended his
career in Switzerland. He
formulated the power-law
distribution (or "Pareto’s Law"), as
a model for how income or wealth
is distributed across society.

see, e.g. Statistics of Extremes A.C. Davison and R. Huser Annual Review of
Statistics and Its Application 2015 2 :1, 203-235



From Bounded (γ < 0) to Heavy tails (γ > 0)
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Examples with p0 = P(X > u) and p1 = P(Z > u)



Moving to multivariate extremes





Multivariate generalized Pareto definition

Simulation

Vγ=0
d
= E + T− max

1≤j≤d
Tj ,

where E ∼ Exp(1) and T a d-dimensional r.v., ⊥ E .

Exponential conditional marginals

P[Vi > z|Vi > 0] = exp(−z)
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Multivariate generalized Pareto definition

Simulation

Vγ=0
d
= E + T− max

1≤j≤d
Tj ,

where E ∼ Exp(1) and T a d-dimensional r.v., ⊥ E .

Different marginals

Every MGP vector has a representation on {v ∈ Rd : v 6≤ 0} as

V d
= σ

eγ Vγ=0 − 1
γ

and

P[Vj > v | Vj > 0] = (1 + γjv/σj )
−1/γj
+ ,



MGPD simulated samples with density contours



Theoretical justification

Let Y ∈ Rd and Yi = (Yi1, . . . ,Yid ), i ∈ {1, . . . , n}, n iid copies of Y. Let
Mn := (Mn,1, . . . ,Mnd ) with Mnj := max(Y1j , . . . ,Ynj )

Max-domain of attraction

P
[

Mn − bn

an
≤ x

]
= Pn (Y ≤ anx + bn)

d−→ MGEV (x), as n→∞.

(1)

Multivariate Generalized Pareto (GP) r.v. (Rootzen & Tajvidi, 2006)

Let l = (l1, . . . , ld ) the lower endpoints vector of G. If (1) holds,

max

{
Y− bn

an
, l
}
| Y 6≤ bn

d→ V, as n→∞,

where V is said to follow a multivariate GP distribution with cdf H.
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Multivariate generalized Pareto properties

Linear projection (Rootzen et al. 2016)

If γ = γ1, then for any weights w = (w1, . . . ,wd ) > 0 such that
P[wT V > 0] > 0,

wT V | wT V > 0 ∼ GP(wTσ, γ).
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MGPD and maximizing causality



Causality cheat sheet

PN = FAR = max

(
1− p0

p1
, 0
)
,

PS = max

(
1− 1− p1

1− p0
, 0
)
,

PNS = max (p1 − p0, 0) ,

where p0 proba in the counterfactual world & p1 in the factual one

Optimal projection that maximizes PN

Find weights w ∈ {w ∈ [0, 1]d : w1 + · · ·+ wd = 1} that maximizes

PN(v ,w) = max

(
1− P[wT X(0) > v ]

P[wT X(1) > v ]
, 0
)
.
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Optimal projection that maximizes PN

Find weights w ∈ {w ∈ [0, 1]d : w1 + · · ·+ wd = 1} that maximizes

PN(v ,w) = max

(
1− P[wT X(0) > v ]

P[wT X(1) > v ]
, 0
)
.

Homegeneous case with γ = γ1d

P[wT X > v ] = P[wT X > wT u]P[wT (X− u) > v −wT u | wT (X− u) > 0]

≈ P
[
wT X > wT u

]
H
(

v −wT u; wTσ, γ
)
,



Necessary gain from univariate to multivariate analysis (equal weights but
different dependence strengths)



Necessary gain from univariate to bivariate analysis (equal dependence but
different weights)



Climate model (CNRM)



Weights influence



Weights influence



Projection wT V(i) with Vγ=0 = E + T−max1≤j≤d Tj

P[wT V > v ] =
1

(γv + wTσ)1/γ E


 d∑

j=1

wjσjeγ(Tj−max(T))

1/γ
 if γ 6= 0,



Projection wT V(i) with Vγ=0 = E + T−max1≤j≤d Tj with γ = 1

If T a bivariate normal r.v. with Var(Ti ) = 1 & Cor(T1,T2) = ρ, then

P[wT V > v ] =
wTσ

v + wTσ

{
e1−ρΦ

(
−
√

2(1− ρ)
)

+
1
2

}
.

PNS

PNS(v ,w) = c1
wTσ(1)

v + wTσ(1) − c0
wTσ(0)

v + wTσ(0)

with ci = e1−ρ(i)Φ
(
−
√

2(1− ρ(i))
)

+ 1
2

Maximizing PNS with respect to v

v∗ =
(wTσ(0))(wTσ(1)) +

√
(wTσ(0))(wTσ(1))c0c1

c1(wTσ(1))− c0(wTσ(0))

Also explicit expressions for maximizing PNS with respect to w, but particularly ugly
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Example : γ = 1 and Vγ=0 = E + T−max1≤j≤d Tj with T a bivariate normal



Example : γ = 0 and Vγ=0 = E + T−max1≤j≤d Tj with T a bivariate normal



Conclusions

Main messages

Interesting links between Extreme Value Theory and Causality Theory in
attributing climate extremes

Multivariate Pareto projections can be optimized with respect to
causation criteria

In climate studies, this can help contrasting the impact of anthropogenic
effect



Future work on difference sources of error and/or uncertainty in D&A

Natural climate internal variability

Natural forcing variations

Model uncertainty from approximating the true climate system
with numerical experiments

Observational uncertainties due to instrumental errors,
homogenization problems and mismatches between data
sources

Sampling uncertainty in space and time

Statistical modeling error by assuming a specific statistical
model, e.g., assuming a generalized extreme value distribution
for independent block maxima.

Inferential uncertainties

PhD ad on "Development of machine learning methods to combine
multi-model biases in studies of detection and attribution of climatic
extremes" (contact me).



The cornerstone of causality: counterfactual definition

! D. Hume, An Enquiry Concerning Human
Understanding,1748
« We may define a cause to be an object
followed by another, where, if the first object
had not been, the second never had existed.!»

! D. K. Lewis, Counterfactuals, 1973
«!We think of a cause as something that makes
a difference, and the difference it makes must
be a difference from what would have
happened without it. Had it been absent, its
effects would have been absent as well.!»

D. Hume, 18th century

D. Lewis, 20th century

see, e.g. Hannart, A., Pearl J. Otto F., P. Naveau and M. Ghil. (BAMS, 2015). Counterfactual causality theory for the attribution of weather

and climate-related events



Consolidation of a standard causality theory (1980-1990)

! Common theoretical corpus on
causality

— what does «X causes Y» mean ?

— how does one evidence a causality
link from data ?

— philosophy, artificial intelligence,
statistics.

— statistics alone not enough - more
concepts needed.

! J. Pearl (2000), Causality: models,
reasoning and inference,
Cambridge University Press.

! Turing Award 2004.

!   Provides clear semantics and sound logic for causal reasoning.
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Oriented graphsOverview of the theory - oriented graphs

! Oriented graphs:
— visual representation of the conditional independence structure of a joint

distribution



Interventional probability

Overview of the theory - interventional probability

! Limitation of oriented graphs
— identifiability: several causal graphs are compatible with the same pdf

(and hence with the same observations).

— Need for disambiguation.

experimentation



Interventional probability

Overview of the theory - interventional probability

! New notion:
— intervention do(X=x)

— interventional probability P(Y l do(X=x)) = P(Yx)

the probability of rain knowing that the barometer is decreasing,
 in a non-experimental context in which the barometer evolution is left unconstrained

the probability of rain forcing the barometer to decrease,
in an experimental context in which the barometer is manipulated



Source : A. Hannart & PN, Journal of Climate, 2018



Source : A. Hannart & PN, Journal of Climate, 2018



Source : A. Hannart & PN, Journal of Climate, 2018



Fundamental difference : necessary and sufficient causation

Overview of the theory - necessary and sufficient causation

! Definitions:

— “X is a necessary cause of Y” means that X is required for Y to occur but
that other factors might be required as well.

— “X is a sufficient cause of Y” means that X always triggers Y but that Y
may also occur for other reasons without requiring X.

! Examples:
— clouds are a necessary cause of rain but not a sufficient one.
— rain is a sufficient cause for the road being wet, but not a necessary one.



Fundamental difference : necessary and sufficient causation

Overview of the theory - necessary and sufficient causation

! Definitions:

— Probability of necessary causality = PN = the probability that the event
Y would not have occurred in the absence of the event X given that both
events Y and X did in fact occur.

— Probability of sufficient causation = PS = the probability that Y would
have occurred in the presence of X, given that Y and X did not occur.

! Formalization:


