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Motivation from Statistical Physics

Current large deviations in lattice gases/dynamic phase transitions
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[Giardina et al. (2006)]

J(ρ) typical current , j < J(ρ) atypical current phase separation
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Sequential Monte Carlo methods

[D. Alvares, PhD thesis, researchgate.net]

Particle filters
[Crisan, Lyons (1997); Del Moral, Miclo (2000); Del Moral, Doucet, Jasra (2006); Rousset (2006); . . .]

dynamic rare events/cloning algorithms
[Giardina, Kurchan, Peliti (2006); Lecomte, Tailleur (2007); Pérez-Espirages, Hurtado (2019); . . .]
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Mathematical setting

Continuous-time Markov jump process (Xt : t ≥ 0) , Px, Ex
state space E, locally compact Polish space (e.g. Rd, NL0 or {0, 1}Z)

transition kernel W (x, dy) , w(x) =
∫
E
W (x, dy) ≤ w̄ <∞

generator Lf(x) =

∫
E

W (x, dy)[f(y)− f(x)], f ∈ Cb(E), x ∈ E

distribution

µt(f) := Eµ0

[
f(Xt)

]
with

d

dt
µt(f) = µt(Lf) , f ∈ Cb(E)

Assumption. Asymptotic stability

There exist C > 0, α ∈ (0, 1), such that for all µ0 ∈ P(E)∥∥µt(f)− µ∞(f)
∥∥ ≤ C‖f‖αt , t ≥ 0 ,

where µ∞ ∈ P(E) is the unique stationary distribution.
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Feynman-Kac model
potential V ∈ Cb(E) , LVf(x) := Lf(x) +V(x)f(x)

Feynman-Kac measures (νt : t ≥ 0) where ν0 = µ0

νt(f) := Eµ0

[
f(Xt) e

∫ t
0
V(Xs)ds

]
with

d

dt
νt(f) = νt(LVf)

non-conservative LV1(x) = 0 + V(x) 6= 0

principal eigenvalue λ ∈ R with left eigenvector µV∞ ∈ P(E)

lim
t→∞

1

t
log νt(1) = λ = µV∞(LV1) = µV∞(V)

normalized measures µV
t (f) = µt(f) := νt(f)/νt(1)

d

dt
µt(f) = µt

(
Lf + Vf − µt(V)f

)
(?)

asymptotic stability
∥∥µt(f)− µV∞(f)

∥∥ ≤ C‖f‖αt , t ≥ 0 , α ∈ (0, 1)
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McKean interpretation
d

dt
µt(f) = µt

(
Lf + Vf − µt(V)f

)
= µt

(
Lf + L̃µt

f
)

McKean process (X̃(t) : t ≥ 0) on E with generator Lµ := L+ L̃µ

L̃µf(x) =

∫
E

W̃ (x, y)µ(dy)
(
f(y)− f(x)

)
, µ ∈ P(E)

such that µ
(
L̃µf

)
= µ(Vf)− µ(V)µ(f) .

holds if and only if µ
(
W̃ (., x)− W̃ (x, .)

)
= V(x)− µ(V)

Examples for constant c ∈ R or c = µ(V) (using g = g+ − g−)

1. W̃1(x, y)=
(
V(x)− c

)−
+
(
V(y)− c

)+
2. W̃2(x, y)=

(
V(y)− V(x)

)+
3. W̃3(x, y)=

(
V(x)− µ(V)

)−(V(y)− µ(V)
)+

µ
(
V − µ(V)

)+
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Particle approximations
(ξ
t

: t ≥ 0) on EM with PM , EM , M ’clones’ ξ1t , . . . ξ
M
t run in parallel

Estimate µt by the empirical measure µMt := m(ξ
t
) with

m(x)(dy) :=
1

M

M∑
i=1

δxi(dy) as a distribution on E .

Mean-field approximations for a given McKean model Lµ = L+ L̃µ

LMF (x) =
M∑
i=1

L(i)
m(x)F (x) , F ∈ Cb(EM )

where L(i)
m(x) acts on xi 7→ F (x1, .., xi, .., xM ).

F (x) = f(xi) ⇒ LMf(xi) = Lm(x)f(xi)

F (x) =
1

M

M∑
i=1

f(xi) = m(x)(f) ⇒ LMm(x)(f) = m(x)
(
Lm(x)f

)
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Cloning/Killing interpretation

time
X

X X

X

X

X

X

X

O

O

O

OO

O

O

O O

O

O O

O  Mutation X  Cloning X  Killing

LMF (x) =

M∑
i=1

∫
E

W (xi, dy)
(
F (xi,y)− F (x)

)
+

M∑
i=1

(
V(xi)− c

)+ 1

M

M∑
j=1

(
F (xj,xi)− F (x)

)
+

M∑
i=1

(
V(xi)− c

)− 1

M

M∑
j=1

(
F (xi,xj )− F (x)

)
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Martingale characterization

Stochastic analysis to characterize fluctuations:

MM
F (t) := F

(
ξ
t

)
− F

(
ξ
0

)
−
∫ t

0

LMF
(
ξ
s

)
ds

is a martingale on R with (predictable) quadratic variation

〈MM
F 〉(t) =

∫ t

0

ΓMF
(
ξ
s

)
ds ,

and carré du champ ΓMF (x) := LMF 2(x)− 2F (x)LMF (x) .

Mean-field approximations with McKean model Lµ and Γµ

F (x) = f(xi) ⇒ ΓMF (x) = Γm(x)f(xi)

F (x) = m(x)(f) ⇒ ΓMF (x) =
1

M
m(x)(Γm(x)f) .
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Main convergence result

Assumptions

For a given McKean model Lµ on E we assume that the sequence of particle
approximations (ξ

t
: t ≥ 0) on EM with generators LM (and associated ΓM )

satisfy for all f ∈ Cb(E) and F (x) = m(x)(f)

(A1) LMF (x) = m(x)
(
Lm(.)f

)
for all M ≥ K

(Consistency)

(A2) ΓMF (x) =
1

M
m(x)

(
Gm(.)f

)
+O

(
1
M2

)
as M →∞

where sup
µ∈P(E)

sup
‖f‖≤1

‖Gµ(f, f)‖ <∞ (Concentration)

(A3) almost surely, sup
t≥0

∣∣{1 ≤ i ≤M : ξit 6= ξit−}
∣∣ ≤ K

(bounded jumps)

(A4) ξ10 , . . . , ξ
M
0 ∼ µ0 i.i.d.r.v.s

(initial condition)
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Main convergence result

Convergence of estimators (LLN)

Assume asymptotic stability and (A1) to (A4) for a particle approximation µMt .
Then for all f ∈ Cb(E) the systematic error is bounded as

sup
t≥0

∣∣∣EM[µMt (f)
]
− µt(f)

∣∣∣ ≤ C‖f‖
M

for all M large enough ,

where µt(f) solves (?), and the random error for all p ≥ 2 as

sup
t≥0

EM
[∣∣∣µMt (f)− EM

[
µMt (f)

]∣∣∣p]1/p ≤ Cp‖f‖√
M

.

Unbiased estimators for unnormalized measures

νMt (f) := νMt (1)µMt (f) with νMt (1) := exp

(∫ t

0

µMs (V)ds

)
,

where EM
[
νMt (f)

]
= νt(f) for all t ≥ 0, M ≥ 1, f ∈ CB(E).
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Sketch of the proof

propagator Θt,T f(x) :=
PVT−tf(x)

µt(PVT−t1)
s. th. µT (f) = µt

(
Θt,T f

)
EM
[∣∣µMT (f)− µT (f)

∣∣p]1/p ≤ EM[∣∣µMT (f)− µMt
(
Θt,T f

)∣∣p]1/p
+EM

[∣∣µMt (Θt,T f
)
− µT (f)

∣∣p]1/p
choose T − t ∝ logM and use asymptotic stability

martingale decomposition for F (x) = m(x)(f)

µMT (f)− µMt (f) =MM
f (T − t) +

∫ T

t

Lm(ξ
s
)(f)ds

connect predictable QV with QV (bounded jumps A3)

use BDG inequality to bound moments of martingales (A2)

S. Grosskinsky (TU Delft) Limit Theorems for Cloning May 21, 2021 14 / 25



Asymptotic variance

Partial result

Assume asymptotic stability and (A1) to (A4) for a particle approximation µMt ,
such that for some T > 0 and all 0 ≤ s ≤ T , f ∈ Cb(E)

µMs
(
GµM

s
(f)
)
→ µs

(
Gµs(f)

)
in a strong enough sense(?) .

Then VMT (f) :=
√
M
(
µMT (f)− µT (f)

)
→ VT (f) in law as M →∞. Here

VT (f) is a centred Gaussian with asymptotic variance

E
[
VT (f)2

]
= µ0

(
(Θ0,T f̄)2

)
+

∫ T

0

µs
(
Gµs(Θs,T f̄)

)
ds ,

where Θt,T f is the propagator for µt and f̄ = f − µt(f).
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More general particle approximations
Mean-field approximation

time
X

X X

X

X

X

X

X

O

O

O

OO

O

O

O O

O

O O

O  Mutation X  Cloning X  Killing

Cloning algorithm [Giardina, Kurchan, Peliti (2006); Lecomte, Tailleur (2007)]

time

X X

X

X

X

X

X

O

O

O

O

O

O

O  Mutation X  Cloning X  Killing

X

X

X
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The cloning algorithm

cloning distribution πx on subsets of {1, . . . ,M}

LMc F (x) :=

M∑
i=1

∫
E

W (xi, dy)
∑

A⊆{1,..,M}

πxi(A)
(
F (xA,xi;i,y)− F (x)

)
+

M∑
i=1

(
V(xi)− c

)− 1

M

M∑
j=1

(
F (xi,xj )− F (x)

)

time

X X

X

X

X

X

X

O

O

O

O

O

O

O  Mutation X  Cloning X  Killing

X

X

X
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The cloning algorithm

cloning distribution πx on subsets of {1, . . . ,M}

LMc F (x) :=

M∑
i=1

∫
E

W (xi, dy)
∑

A⊆{1,..,M}

πxi(A)
(
F (xA,xi;i,y)− F (x)

)
+

M∑
i=1

(
V(xi)− c

)− 1

M

M∑
j=1

(
F (xi,xj )− F (x)

)

choose πx(A) = πx(|A|)
/(

M
|A|
)

= 0 if |A| > K and (A3)

R(x):=

M∑
n=0

nπx(n) =

(
V(x)− c

)+
w(x)

, Q(x) :=

M∑
n=0

n2πx(n) ≤ C <∞ .

For F (x) = m(x)(f) we get

LMc F (x) = LMF (x) = m(x)
(
Lm(.)f

)
(A1)
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The cloning algorithm

ΓMc F (x) =
1

M
m(x)

( =Gm(.)(f)︷ ︸︸ ︷
Γm(.)f+w(Q−R)

(
`m(.)f(.)

)2
+O(1)

)
+O

(
1
M2

)
where `µf(x) :=

∫
E

(
f(y)− f(x)

)
µ(dy) (A2)

generic choice πx(n) =

 R(x)− bR(x)c , n = bR(x)c+ 1
bR(x)c+ 1−R(x) , n = bR(x)c

0 , otherwise

Selection intensities for McKean models, to minimize Γm(.)f

1. S1(x)=

M∑
i=1

∣∣V(xi)− c
∣∣ ⇒ c = median(V(x))

2. S2(x)=
1

2

M∑
i,j=1

∣∣V(xi)− V(xj)
∣∣ ≤ S1(x)

3. S3(x)≤ S2(x)
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Dynamic large deviations
Continuous-time Markov jump process (Xt : t ≥ 0) with path space (Ω,P)

Additive path space observable , g ∈ Cb(E2), h ∈ Cb(E)

AT [ω] :=
∑
t≤T

ω(t−) 6=ω(t)

g
(
ω(t−), ω(t)

)
+

∫ T

0

h
(
ω(t)

)
dt

Assume that AT fulfills a large deviation principle such that

P
[
AT /T ≈ a

]
� e−T I(a) as T →∞ ,

with rate function I(a) ∈ [0,∞] .

Assume I(a) is convex, then I(a) = sup
k∈R

(
ka− λk

)
for all a ∈ R,

given by the Legendre transform of the SCGF

λk := lim
T→∞

1

T
logEµ0

[
ekAT

]
∈ R , k ∈ R .

[Chetrite, Touchette (2015)]
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SCGF and tilted generator

νkT (f) = Eµ0

[
f(XT ) exp

(
k
∑
t≤T g

(
Xt−, Xt

)
+ k

∫ T
0
h
(
Xt

)
dt
)]

λk is principal eigenvalue of the tilted generator

Lkf(x):=

∫
E

W (x, dy)
[
ekg(x,y)f(y)− f(x)

]
+ kh(x)f(x)

=

∫
E

Wk(x, dy)
[
f(y)− f(x)

]
︸ ︷︷ ︸

L̂kf(x)

+Vk(x)f(x)

with modified rates Wk(x, dy) = W (x, dy)ekg(x,y) for the jump part L̂k ,

and diagonal potential Vk(x) =

∫
E

W (x, dy)
[
ekg(x,y) − 1

]
+ kh(x) .

Furthermore, with λk(u, t) := 1
t−u

∫ t
u
µks(Vk) ds

∣∣λk(bt, t)− λk
∣∣ ≤ C‖Vk‖αbt

t
for all b ∈ [0, 1) .
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Particle estimators for SCGF

particle approximation (ξ
t

: t ≥ 0) , with empirical measure µMt

Estimator ΛMk (u, t) :=
1

t−u

∫ t

u

ds
1

M

M∑
i=1

Vk(ξis)

Error bounds for cloning algorithm

Assume asymptotic stability and (A1) to (A4). Then there exist C,Cp > 0 such
that for all b ∈ [0, 1) the systematic error is∣∣∣EM [ΛMk (bt, t)

]
− λk

∣∣∣ ≤ C‖Vk‖( 1

M
+
αbt

t

)
for all M, t large enough ,

and the random error for all p > 2 is

sup
t≥0

EM
[∣∣∣ΛMk (t)− EM

[
ΛMk (t)

]∣∣∣p]1/p ≤ Cp‖Vk‖√
M

for all M large enough .
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The cloning factor

Jump process
(
CMt : t ≥ 0

)
on R+ with CM0 = 1, where at each selection event

of size n ≥ −1 at time t the value is updated as

CMt = CMt−(1 + n/M) .

joint process
(
ξ
t
, CMt

)
is Markov with extended generator LMc F (x, c)

EM [CMt ] etc = νt(1) , unbiased estimator for eλkt for large t

Observing only the cloning factor with F (x, c) = log c we get

LMc F (x, c) = m(x)(Vk − c) +O
( 1

M

)
due to bounded clone event size n (A4)

Martingale characterization provides new estimator

Λ̄Mk (u, t) :=
1

t−u
log

CMt
CMu

+ c= ΛMk (u, t) +
MM

C (t)−MM
C (u)

t− u
+O

(
1
M

)
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Current large deviations for IPS

IPS with generator Lf(η) =
∑
z∈TL

p u(ηz, ηz+1)
(
f(ηz,z+1)− f(η)

)
+q u(ηz, ηz−1)

(
f(ηz,z−1)− f(η)

)
cont.-time jump process on state space E = NL0 , NN dynamics with PBC

finite state CTMC with fixed number of particles

⇒ LDP for (AT )T due to contraction [Bertini, Faggionato, Gabrielli (2015)]

assume
∑
z u(ηz, ηz+1) =

∑
z u(ηz, ηz−1) and p+ q = 1

total exit rate w(η) =
∑
z∈TL

u(ηz, ηz+1)

wk(η) = Qkw(η) where Qk = pek + qe−k

potential Vk(η) = (Qk − 1)w(η)

Example inclusion process with u(n,m) = n(d+m)
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Comparison of algorithms

SCGF for current fluctuations in a stochastic lattice gas

cloning algorithm W̃ (x, y) =
(
Vk(y)− c

)+
+
(
Vk(x)− c

)−
, c = 0

mean-field approximation W̃ (x, y) =
(
V(y)− V(x)

)+
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Comparison of algorithms

medianmean

c=0

(cloning alg.)

k=0.1
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c

S
k
(η
(t
))
/N

total selection intensities (depending on McKean models)

cloning algorithm SM1 (η) = |Qk − 1|w(η)

mean-field SM2 (x) = |Qk − 1| 1

2M

∑
i,j

∣∣w(ηi)− w(ηj)
∣∣

SM3 (x) = |Qk − 1|1
2

∑
i

∣∣w(ηi)− µ(η)(w)
∣∣
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Conclusion

Summary

analyze and compare particle approximations via martingale characterizations

adapt/generalize convergence results from sequential Monte Carlo
[del Moral, Miclo, Rousset,. . . ]

rigorous version of recent heuristic results on cloning algorithms
[Nemoto, Guevara Hidalgo, Lecomte (2017), Guevara Hidalgo (2018)]

Work in progress/open questions

asymptotic covariances and convergence to a stationary Gaussian process

extensions and potential improvement of cloning algorithms

exploit freedom in McKean representations and particle approximations

numerical estimates for asymptotic variances

Thank you!
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