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Motivation

1 Protection of creditors is a key objective of financial regulation.
2 The current regulatory requirements based on Value at Risk and Average Value at Risk limit the probability

of default of financial institutions, but fail to control the size of recovery on creditors’ claims in the case
of default.

3 We resolve this failure by developing novel recovery risk measures.
4 The new risk measures can be applied to performance-based management of business divisions and

optimal portfolio choice.
5 Simulation algorithms for computing risk measure that quantify rare events are available in the

literature. These can be extended to recovery risk measures.
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Computation of Capital Requirements
One-period model with dates t = 0, 1 and market-consistent valuation of all assets and liabilities

▶ Time 0: today
▶ Time 1: regulatory time horizon

The own funds, or net asset values, are denoted by E0 and E1.
▶ The own funds E0 at t = 0 are deterministic.
▶ The own funds E1 on a one-year horizon are random.

Stochastic projections capture the random evolution of the balance sheet.

	

Stefan Weber, Leibniz Universität Hannover



house of insurance

Solvency II – Standard Formula vs. Internal Model

Methods for SCR calculation

	

Standard Formula
Standard Formula with
company specific parameter
Partial Internal Model
Internal Model

Standard Formula

!

Calculation of capital requirements per sub-modules based
on prescribed stress levels
Aggregation of single risks via iterative application of the
square root formula according to a fixed correlation matrix
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Solvency II – Standard Formula vs. Internal Model (cont.)

Methods for SCR calculation

	

Standard Formula
Standard Formula with
company specific parameter
Partial Internal Model
Internal Model

Internal Models
SCR calculation with complex simulation models, partially
with approximation techniques, e. g., replicating portfolios or
LSMC for Internal Models Life
Approval by supervisory authority required
Internal Models are more than just a tool to compute the
SCR:
Embedding of the Internal Model into the corporate
management necessary (‘Use Test’)
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Solvency Tests
Solvency balance sheet

Assets Liabilities

At
Lt

Et = At − Lt

▶ The quantities at time t = 0 are known whereas the quantities at time t = 1 are random variables on
a given probability space (Ω, F ,P).

▶ The increment of the net asset value is ∆E1 := E1 − E0.
Solvency test
For a given regulatory monetary risk measure ρ, the company is solvent1 if

ρ(∆E1) ≤ E0 ⇐⇒ ρ(E1) ≤ 0

1In practice, solvency capital requirements may only refer to “unexpected” losses. In this case, in the definition of ∆E1,
E0 is replaced by the expected value of (the suitably discounted) E1. In this respect, the European regulatory framework
for insurance companies Solvency II is contradictory in itself.
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Solvency Tests (cont.)
Standard examples are the monetary risk measures Value at Risk (V@R) and Average Value at Risk
(AV@R) at some level α ∈ (0, 1):

V@Rα(X) := inf{x ∈ R ; P(X + x < 0) ≤ α}, AV@Rα(X) := 1
α

∫ α

0
V@Rβ(X)dβ

Regulatory standards
▶ Solvency II V@R at level α = 0.5%
▶ Swiss solvency test AV@R at level α = 1%
▶ Basel III AV@R with level α = 2.5%

Simulation of risk measures
▶ Applications of stochastic approximation and stochastic average approximation to the evaluation of

risk measures were investigated by Rockafellar & Uryasev (2000), Rockafellar & Uryasev (2002),
Dunkel & Weber (2007), Bardou, Frikha & Pagès (2009), Dunkel & Weber (2010), Meng, Sun & Goh
(2010), Sun, Xu & Wang (2014), Bardou, Frikha & Pagès (2016), Kim & Weber (2021).

Stefan Weber, Leibniz Universität Hannover



house of insurance

Axiomatic Theory of Risk Measures

Artzner, Delbaen, Eber & Heath (1999)
Föllmer & Schied (2002)
Frittelli & Rosazza Gianin (2002)
. . .
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Happy Birthday!

Hans Föllmer
(born May 20, 1941)
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Recovery of Claims

Recovery of Claims
The event

{A1 ≥ λL1}
contains those scenarios for which at least a fraction λ ∈ (0, 1) of the claims is recovered.

Question
Which risk measures control the probability P(A1 ≥ λL1) of recovering at least a fraction λ ∈ (0, 1) of
claims?

▶ Both V@R and AV@R fail at this task.
▶ We suggest recovery risk measures that control recovery and can serve as a basis for solvency tests.
▶ They can also be applied to performance-based management of business divisions of firms and optimal

investment management.
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Recovery of Claims (2)

Proposition
We denote by X a set of positive random variables on some nonatomic probability space (Ω, F , P). We assume
that X contains all positive discrete random variables.

For all α ∈ (0, 1) and λ ∈ (0, 1) we have

1 − α = inf{P(A ≥ λL) ; A, L ∈ X , AV@Rα(A − L) ≤ 0}
= inf{P(A ≥ λL) ; A, L ∈ X , V@Rα(A − L) ≤ 0}.
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Recovery of Claims – Example

Probability space Ω = {g, b} with P(b) = α
2 with α ≈ 0, say α = 0.5% or α = 1%.

Liabilities

L1(ω) =
{

1 if ω = g,

100 if ω = b.

The company can manage its assets by engaging in a stylized financial contract with zero initial cost
transferring dollars from the good state to the bad state.
More specifically, we assume that the company can choose one of the following asset profiles at time 1:

Ak
1(ω) =

{
101 − k if ω = g,

k if ω = b,
with k ∈ [0, 100].

Hedging its liabilities completely would require the company to choose k = 100.
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Recovery of Claims – Example (2)
For any k ∈ [0, 100], the company’s net asset value is given by

Ek
1(ω) =

{
100 − k if ω = g,

k − 100 if ω = b.

Due to limited liability, the corresponding shareholder value is

max{Ek
1(ω), 0} =

{
100 − k if ω = g,

0 if ω = b.

Hence, the choice k = 0 is optimal from the perspective of shareholders – corresponding to no recovery in
the bad state.
The company is solvent independent of k:

V@Rα(Ek
1) = k − 100 ≤ 0, AV@Rα(Ek

1) = 1
α

(
α

2 (100 − k) + α

2 (k − 100)
)

= 0.
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Recovery Value at Risk
Definition
The Recovery Value at Risk with increasing level function γ : [0, 1] → (0, 1) is defined by

RecV@Rγ(X, Y) = sup
λ∈[0,1]

V@Rγ(λ)(X + (1 − λ)Y).

Consider solvency balance sheets, for times t = 0, 1,
Assets Liabilities

At
Lt

Et = At − Lt

and set ∆E1 = E1 − E0.
The solvency condition RecV@Rγ(∆E1, L1) ≤ E0 is equivalent to requiring that for all recovery fractions
λ ∈ [0, 1] the recovery probabilities satisfy

P(A1 < λL1) ≤ γ(λ) ⇐⇒ P(A1 ≥ λL1) ≥ 1 − γ(λ).
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Recovery Value at Risk (cont.)

Selected properties
1 Cash invariance in the first component

RecV@Rγ(X + m, Y) = RecV@Rγ(X, Y) − m ∀ X, Y ∈ L0, m ∈ R

2 Monotonicity

X1 ≥ X2, Y1 ≥ Y2 =⇒ RecV@Rγ(X1, Y1) ≤ RecV@Rγ(X2, Y2) ∀ X1, X2, Y1, Y2 ∈ L0

3 Positive homogeneity

RecV@Rγ(aX, aY) = a · RecV@Rγ(X, Y) ∀ X, Y ∈ L0, a ∈ [0, ∞)

4 Star-shapedness in the first component

RecV@Rγ(aX, Y) ≥ a · RecV@Rγ(X, Y) ∀ X, Y ∈ L0, Y ≥ 0, a ∈ [1, ∞)
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General Recovery Risk Measures
Definition
For every λ ∈ [0, 1] consider a map ρλ : X → R ∪ {∞} and assume that ρλ1 ≥ ρλ2 whenever λ1 ≤ λ2. The
recovery risk measure Recρ : X × X → R ∪ {∞} is defined by Recρ(X, Y) := supλ∈[0,1] ρλ(X + (1 − λ)Y).

This definition contains many recovery risk measures that may possess additional desirable properties.
An example is recovery average value at risk which is cash invariant in its first component, monotone,
convex, subadditive, positively homogeneous, star shaped in its first component, and normalized.

Definition
The Recovery Average Value at Risk RecAV@Rγ : L1 × L1 → R ∪ {∞} with increasing level function
γ : [0, 1] → (0, 1) is defined by

RecAV@Rγ(X, Y) := sup
λ∈[0,1]

AV@Rγ(λ)(X + (1 − λ)Y).
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Subadditivity and Limit Systems
We consider a bank or an insurance company that consists of N subentities. For each date t = 0, 1 their
assets, liabilities, and net asset value are denoted by Ai

t, Li
t, and Ei

t, i = 1, . . . , N.
The consolidated figures are denoted by

At =
N∑

i=1

Ai
t, Lt =

N∑
i=1

Li
t, Et =

N∑
i=1

Ei
t.

The firm may enforce entity-based risk constraints of the form

RecAV@Rγ(Ei
1, Li

1) ≤ ci, i = 1, . . . , N,

where c1, . . . , cN ∈ R are given risk limits.
If the limits are chosen to satisfy

∑N
i=1 ci ≤ 0, then by subadditivity:

RecAV@Rγ(E1, L1) ≤
N∑

i=1

RecAV@Rγ(Ei
1, Li

1) ≤
N∑

i=1

ci ≤ 0.
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Recovery of Claims – Example (cont.)
We return to the simple example introduced above with

Ek
1(ω) =

{
100 − k if ω = g,

k − 100 if ω = b.
∀ k ∈ [0, 100]

For a probability level β ∈ (0, α/2) and a desired recovery level r ∈ (0, 1), we set

γ(λ) =
{

β if λ ∈ [0, r),
α if λ ∈ [r, 1].

This implies that
RecV@Rγ(Ek

1, L1) ≤ 0 ⇐⇒ k ≥ 100r,
i.e., the maximal shareholder value is attained for k = 100r.
Liabilities in state b are equal to 100. This implies that the recovery fraction in state b is equal to r.
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ALM and Recovery – Another Example
We consider a firm with a stylized balance sheet.
Assets are deterministic, but the firm is capable of controlling the shape of the liability distribution:

▶ A1 is equal to a constant k > 0

0 a b c

▶ Liabilities L1 follow a probability density function with two peaks. The area below the left peak equals
99.5% while the area below the right peak equals 0.5%.
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ALM and Recovery – Another Example (2)
Regulatory capital requirements

▶ We focus on VaR at level 0.5% and AVaR at level 1%.
▶ The corresponding solvency capital requirements admit analytic solutions:

ρreg(∆E1) =

{
V@R0.5%(∆E1) = a − k + E0,

AV@R1%(∆E1) =
(

1
2 − 1

3
√

α
2(1−α)

)
a + b+c

4 − k + E0.

Recovery-based capital requirements
▶ Fixing a regulatory level α ∈ (0, 1), we consider a piecewise constant recovery function

γ(λ) =
{

β if λ ∈ [0, r)
α if λ ∈ [r, 1]

, β ∈ (0, α), r ∈ (0, 1), α = 0.5%

▶ The solvency capital requirement corresponding to RecV@R is

RecV@Rγ(∆E1, L1) = max
{

a, r b + c
2

}
− k + E0.
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ALM and Recovery – Another Example (3)

Recovery adjustments
▶ In order to capture the extent to which the regulatory solvency capital requirements fail to control the

recovery on liabilities we define the recovery adjustment

RecAdjγ(∆E1, L1) := max
{

RecV@Rγ(∆E1, L1)
ρreg(∆E1) , 1

}
.

▶ This quantity is the maximum of 1 and the multiplicative factor by which regulatory requirements
would have to be adjusted to guarantee the considered recovery levels.

▶ The case study will show that recovery adjustments can be very high – providing alternative evidence
that conventional solvency requirements do not properly protect recovery.
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ALM and Recovery – Another Example (4)
Recovery adjustments (cont.)

▶ We ask how large the recovery adjustments may become, if a firm’s asset-liability-management is
constrained by the following conditions:

(1) Solvent profile under ρreg ρreg(E1) ≤ 0
(2) Capital requirement under ρreg ρreg(∆E1) > 0
(3) Solvent profile under RecV@Rγ RecV@Rγ(E1, L1) ≤ 0
(4) Capital requirement under RecV@Rγ RecV@Rγ(∆E1, L1) > 0
(5) V@Rα insufficient to control claims recovery RecV@Rγ(E1, L1) > V@Rα(E1)
(6) Range of admissible regulatory solvency ratios smin ≤ E0

ρreg(∆E1) ≤ smax

▶ More precisely, we focus on the optimization problem

max RecAdjγ(∆E1, L1) over A1 and L1 as specified above

under the constraints (1) to (6).
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ALM and Recovery – Another Example (5)

Answer

The optimal value of the problem is bounded from above by smax.

If ρreg = V@R0.5%, this upper bound is attained for every choice of γ.
If ρreg = AV@R1%, this upper bound is attained for special choices of γ, e.g., when β ≥ α

2 and
1
4

√
2α

α−β
< r ≤ 1

4

√
2α√

2α−
√

α−β

1
1
2 + 1

3
√

α
2(1−α)

.

If companies are capable and free to manage their balance sheet, classical solvency tests cannot control
recovery.
In fact, classical solvency tests permit firms to adopt strategies that correspond to the most expensive
recovery adjustments under the constraints (1) - (6).
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Performance Measurement
Return on risk-adjusted capital (RoRaC)

▶ For a subadditive and positively homogeneous recovery risk measure Recρ, the associated RoRaC is
defined by

RoRaC(∆E1, L1) = E(∆E1)
Recρ(∆E1, L1) .

▶ This quantity measures the expected return per unit of economic capital expressed in terms of the risk
measure Recρ.

▶ The goal of the firm is to improve its RoRaC.
Subentities

▶ Denote the net asset values and liabilities of the subentities at time t = 0, 1 by Ei
t and Li

t for
i = 1, . . . , N, respectively.

▶ Total net asset values and liabilities aggregate the subentities:

Lt =
N∑

i=1

Li
t, Et =

N∑
i=1

Ei
t, t = 0, 1
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Performance Measurement (cont.)

Suitable allocation
▶ We seek an allocation of economic capital κi = Recρ∆E1,L1 (∆Ei

1, Li
1), i = 1, . . . , N, that satisfies:

1 Full allocation
∑N

i=1 κi = Recρ(∆E1, L1);
2 Diversification κi ≤ Recρ(∆Ei

1, Li
1) for all i = 1, . . . , N;

3 RoRaC-compatibility If for some i = 1, . . . , N,

RoRaCi :=
E(∆Ei

1)
κi > RoRaC(∆E1, L1) (resp. <),

then there exists ε > 0 such that for every h ∈ (0, ε)

RoRaC(∆E1 + h∆Ei
1, L1 + hLi

1) > RoRaC(∆E1, L1) (resp. <).

Solution
▶ Suitable allocations are Euler allocations: κi = d

dh Recρ(∆E1 + h∆Ei
1, L1 + hLi

1)|h=0
▶ For suitable recovery functions they can be computed for RecAV@R.
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Portfolio Optimization

Risk measures are an important instrument to limit downside risk in portfolio optimization problems.
▶ This idea is related to the classical Markowitz problem in which standard deviation quantifies the risk.

Efficient frontiers characterize the best tradeoffs between return and risk.
Recovery risk measures may successfully be applied to portfolio optimization in practice.

▶ For RecAV@R with suitable recovery functions the characterization of the efficient frontier may, on
the basis of a suitable minimax theorem, be reduced to the minimization of a linear function on a
convex polyhedron.
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Portfolio Optimization (2)
Assets and liabilities

▶ We consider k = 1, . . . , K assets with prices Sk
t , t = 0, 1.

▶ Random one-period returns are denoted by Rk such that

Sk
1 = Sk

0 · (1 + Rk).

▶ An investor invests a fraction xk > 0 of her total budget b > 0 into each product k. The total value of
her assets at time t = 1 is thus equal to

b ·
K∑

k=1

xk(1 + Rk) = b ·

(
1 +

K∑
k=1

xkRk

)
.

We set R = (R1, . . . , RK)⊤ and x = (x1, . . . , xK)⊤.
▶ In addition, we suppose that the investor’s liabilities at time t = 1 amount to a random fraction Z of

the initial budget, i.e., the liabilities are equal to b · Z.
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Portfolio Optimization (3)
Efficient frontier

▶ We are interested in optimal combinations of return and downside risk – the efficient frontier – but
with risk measured by RecAV@R.

▶ This problem can equivalently be stated as the minimization of risk for a given expected return.
Expected return

▶ The expected future net asset value of the investor equals

b ·

(
1 +

K∑
k=1

xk E(Rk) − E(Z)

)
▶ A target expected return can be achieved by requiring for some c ∈ R that

K∑
k=1

xk E(Rk) = c
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Portfolio Optimization (4)

Downside risk
▶ We are interested in computing and optimizing

RecAV@Rγ

(
b ·

[
1 +

K∑
k=1

xkRk − Z

]
, bZ

)
= −b + b · RecAV@Rγ

(
K∑

k=1

xkRk − Z, Z

)
.

▶ We focus on the special case of piecewise-constant recovery function. In this case, RecAV@R is a
maximum of finitely many terms:

RecAV@Rγ

(
K∑

k=1

xkRk − Z, Z

)
= max

i=1,...,n+1
AV@Rαi

(
K∑

k=1

xkRk − riZ

)
.

Stefan Weber, Leibniz Universität Hannover



house of insurance

Portfolio Optimization (5)
A minimax theorem

▶ For convenience, for i = 1, . . . , n + 1 we define auxiliary functions

Ψi(x, v) = 1
αi

· E

([
v −

K∑
k=1

xkRk − riZ

]+)
− v.

▶ This allows us to write

RecAV@Rγ

(
K∑

k=1

xkRk − Z, Z

)
= max

i=1,...,n+1
min
v∈R

Ψi(x, v).

Minimax theorem
The following minimax equality holds:

max
i=1,...,n+1

min
v∈R

Ψi(x, v) = min
v∈R

max
i=1,...,n+1

Ψi(x, v).
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Portfolio Optimization (6)

Computing the efficient frontier
▶ Characterizing the efficient frontier — consisting of pairs of returns and downside risk — is equivalent

to minimizing the function in minimax theorem additionally over x ∈ X where

X = {x ∈ [0, ∞)K ;
K∑

k=1

xk = 1,

K∑
k=1

xk E(Rk) = c}

is a convex polyhedron.
▶ This problem can be reformulated as

min
(x,v,Υ)∈X ×R×R

{
Υ ; Ψi(x, v) ≤ Υ, i = 1, . . . , n + 1

}
.
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Portfolio Optimization (7)

Computing the efficient frontier (cont.)
▶ In typical applications in practice, these expectations are approximated via Monte Carlo simulations.
▶ This allows to reformulate the problem as a linear program:

min Υ

s.t. 1
M · αi

·
M∑

m=1

ui,m − v ≤ Υ, i = 1, . . . , n + 1,

ui,m ≥ v −
K∑

k=1

xkRk,m − riZm, i = 1, . . . , n + 1, m = 1, . . . , M,

ui,m ≥ 0, i = 1, . . . , n + 1, m = 1, . . . , M,

over (x, v, Υ) ∈ X × R × R,

where (R1, Z1), . . . , (RM, ZM) are M independent simulations of the pair (R, Z).
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Conclusion

1 Recovery risk measures successfully control recovery.
2 They can successfully be applied to solvency regulation, performance-based management, and portfolio

optimization.
3 Future research needs to study their implementation and simulation in complex ALM-models.
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Thank you for your attention!
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