Capital Requirements and Claims Recovery: A New Perspective on Solvency Regulation

Stefan Weber

Leibniz Universität Hannover

www.insurance.uni-hannover.de

(joint work with Cosimo Munari & Lutz Wilhelmy)

RESIM 2021 - May 20, 2021

Motivation

- **Protection of creditors** is a key objective of financial regulation.
- Provide the state of the sta
- **We resolve this failure** by developing novel recovery risk measures.
- The new risk measures can be applied to performance-based management of business divisions and optimal portfolio choice.
- Simulation algorithms for computing risk measure that quantify rare events are available in the literature. These can be extended to recovery risk measures.

1 Solvency Capital Regulation

- Risk-Sensitive Solvency Regimes
- Claims Recovery

2 Recovery Risk Measures

- Introducing Recovery Risk Measures
- Controlling Recovery
- Applications

1 Solvency Capital Regulation

- Risk-Sensitive Solvency Regimes
- Claims Recovery

2 Recovery Risk Measures

- Introducing Recovery Risk Measures
- Controlling Recovery
- Applications

Solvency Capital Regulation Risk-Sensitive Solvency Regimes

• Claims Recovery

2 Recovery Risk Measures

- Introducing Recovery Risk Measures
- Controlling Recovery
- Applications

Computation of Capital Requirements

- One-period model with dates t = 0, 1 and market-consistent valuation of all assets and liabilities
 - ► Time 0: today
 - Time 1: regulatory time horizon
- The own funds, or net asset values, are denoted by E_0 and E_1 .
 - The own funds E_0 at t = 0 are deterministic.
 - ▶ The own funds *E*¹ on a one-year horizon are random.
- Stochastic projections capture the random evolution of the balance sheet.

Solvency II – Standard Formula vs. Internal Model

Methods for SCR calculation

Standard Formula

- Standard Formula
- Standard Formula with company specific parameter
- Partial Internal Model
- Internal Model

- Calculation of capital requirements per sub-modules based on prescribed stress levels
- Aggregation of single risks via iterative application of the square root formula according to a fixed correlation matrix

More complexity / effort

Solvency II – Standard Formula vs. Internal Model (cont.)

Methods for SCR calculation

- Standard Formula
- Standard Formula with company specific parameter
- Partial Internal Model
- Internal Model

Internal Models

- SCR calculation with complex simulation models, partially with approximation techniques, e.g., replicating portfolios or LSMC for Internal Models Life
- Approval by supervisory authority required
- Internal Models are more than just a tool to compute the SCR:

Embedding of the Internal Model into the corporate management necessary ('Use Test')

Solvency Tests

• Solvency balance sheet

Assets	Liabilities
A _t	L_t
	$E_t = A_t - L_t$

- The quantities at time t = 0 are known whereas the quantities at time t = 1 are random variables on a given probability space $(\Omega, \mathcal{F}, \mathbb{P})$.
- The increment of the net asset value is $\Delta E_1 := E_1 E_0$.

• Solvency test

For a given regulatory monetary risk measure ρ , the company is solvent¹ if

$$\rho(\Delta E_1) \leq E_0 \iff \rho(E_1) \leq 0$$

Stefan Weber, Leibniz Universität Hannover

¹In practice, solvency capital requirements may only refer to "unexpected" losses. In this case, in the definition of ΔE_1 , E_0 is replaced by the expected value of (the suitably discounted) E_1 . In this respect, the European regulatory framework for insurance companies Solvency II is contradictory in itself.

Solvency Tests (cont.)

Standard examples are the monetary risk measures Value at Risk (V@R) and Average Value at Risk (AV@R) at some level α ∈ (0, 1):

$$\mathsf{V}@\mathsf{R}_{\alpha}(X) := \inf\{x \in \mathbb{R} ; \ \mathsf{P}(X + x < 0) \le \alpha\}, \quad \mathsf{AV}@\mathsf{R}_{\alpha}(X) := \frac{1}{\alpha} \int_{0}^{\alpha} \mathsf{V}@\mathsf{R}_{\beta}(X) d\beta$$

• Regulatory standards

- Solvency II V@R at level $\alpha = 0.5\%$
- Swiss solvency test AV@R at level $\alpha = 1\%$
- **Basel III** AV@R with level $\alpha = 2.5\%$

• Simulation of risk measures

 Applications of stochastic approximation and stochastic average approximation to the evaluation of risk measures were investigated by Rockafellar & Uryasev (2000), Rockafellar & Uryasev (2002), Dunkel & Weber (2007), Bardou, Frikha & Pagès (2009), Dunkel & Weber (2010), Meng, Sun & Goh (2010), Sun, Xu & Wang (2014), Bardou, Frikha & Pagès (2016), Kim & Weber (2021).

Axiomatic Theory of Risk Measures

- Artzner, Delbaen, Eber & Heath (1999)
- Föllmer & Schied (2002)
- Frittelli & Rosazza Gianin (2002)

• ...

Stefan Weber, Leibniz Universität Hannover

Happy Birthday!

Hans Föllmer (born May 20, 1941)

Stefan Weber, Leibniz Universität Hannover

1 Solvency Capital Regulation

- Risk-Sensitive Solvency Regimes
- Claims Recovery

2 Recovery Risk Measures

- Introducing Recovery Risk Measures
- Controlling Recovery
- Applications

Recovery of Claims

Recovery of Claims

The event

 $\{A_1 \ge \lambda L_1\}$

contains those scenarios for which at least a fraction $\lambda \in (0,1)$ of the claims is recovered.

Question

- Which risk measures control the probability $P(A_1 \ge \lambda L_1)$ of recovering at least a fraction $\lambda \in (0, 1)$ of claims?
 - Both V@R and AV@R fail at this task.
 - ▶ We suggest recovery risk measures that control recovery and can serve as a basis for solvency tests.
 - They can also be applied to performance-based management of business divisions of firms and optimal investment management.

Recovery of Claims (2)

Proposition

We denote by \mathcal{X} a set of positive random variables on some nonatomic probability space (Ω, \mathcal{F}, P) . We assume that \mathcal{X} contains all positive discrete random variables.

For all $lpha \in (0,1)$ and $\lambda \in (0,1)$ we have

$$1 - \alpha = \inf \{ P(A \ge \lambda L); A, L \in \mathcal{X}, AV@R_{\alpha}(A - L) \le 0 \}$$

=
$$\inf \{ P(A \ge \lambda L); A, L \in \mathcal{X}, V@R_{\alpha}(A - L) \le 0 \}.$$

Recovery of Claims – Example

- Probability space $\Omega = \{g, b\}$ with $\mathbb{P}(b) = \frac{\alpha}{2}$ with $\alpha \approx 0$, say $\alpha = 0.5\%$ or $\alpha = 1\%$.
- Liabilities

$$L_1(\omega) = egin{cases} 1 & ext{if } \omega = g, \ 100 & ext{if } \omega = b. \end{cases}$$

- The company can manage its assets by engaging in a stylized financial contract with zero initial cost transferring dollars from the good state to the bad state.
- More specifically, we assume that the company can choose one of the following asset profiles at time 1:

$$\mathcal{A}_1^k(\omega) = egin{cases} 101-k & ext{if } \omega = g, \ k & ext{if } \omega = b, \end{cases}$$
 with $k \in [0, 100].$

• Hedging its liabilities completely would require the company to choose k = 100.

house of insurance

Recovery of Claims – Example (2)

• For any $k \in [0, 100]$, the company's net asset value is given by

$$E_1^k(\omega) = egin{cases} 100-k & ext{if } \omega = g, \ k-100 & ext{if } \omega = b. \end{cases}$$

• Due to limited liability, the corresponding shareholder value is

$$\max\{E_1^k(\omega), 0\} = \begin{cases} 100 - k & \text{if } \omega = g, \\ 0 & \text{if } \omega = b. \end{cases}$$

- Hence, the choice k = 0 is optimal from the perspective of shareholders corresponding to no recovery in the bad state.
- The company is solvent independent of k:

$$\mathsf{V}@\mathsf{R}_{\alpha}(\textit{E}_{1}^{k})=k-100\leq0,\quad\mathsf{AV}@\mathsf{R}_{\alpha}(\textit{E}_{1}^{k})=\frac{1}{\alpha}\left(\frac{\alpha}{2}(100-k)+\frac{\alpha}{2}(k-100)\right)=0.$$

Stefan Weber, Leibniz Universität Hannover

1 Solvency Capital Regulation

- Risk-Sensitive Solvency Regimes
- Claims Recovery

2 Recovery Risk Measures

- Introducing Recovery Risk Measures
- Controlling Recovery
- Applications

1 Solvency Capital Regulation

- Risk-Sensitive Solvency Regimes
- Claims Recovery

2 Recovery Risk Measures

- Introducing Recovery Risk Measures
- Controlling Recovery
- Applications

Recovery Value at Risk

Definition

The **Recovery Value at Risk** with increasing *level function* $\gamma : [0,1] \rightarrow (0,1)$ is defined by

```
\operatorname{RecV} \mathbb{Q} \mathbb{R}_{\gamma}(X, Y) = \sup_{\lambda \in [0,1]} \mathbb{V} \mathbb{Q} \mathbb{R}_{\gamma(\lambda)}(X + (1 - \lambda)Y).
```

• Consider solvency balance sheets, for times t = 0, 1,

Assets	Liabilities
A_t	Lt
	$E_t = A_t - L_t$

and set $\Delta E_1 = E_1 - E_0$.

• The solvency condition $\operatorname{RecV}@R_{\gamma}(\Delta E_1, L_1) \leq E_0$ is equivalent to requiring that for all recovery fractions $\lambda \in [0, 1]$ the recovery probabilities satisfy

 $P(A_1 < \lambda L_1) \leq \gamma(\lambda) \iff P(A_1 \geq \lambda L_1) \geq 1 - \gamma(\lambda).$

Recovery Value at Risk (cont.)

Selected properties

Cash invariance in the first component

 $\operatorname{RecV} \operatorname{@R}_{\gamma}(X+m,Y) = \operatorname{RecV} \operatorname{@R}_{\gamma}(X,Y) - m \quad \forall X, Y \in L^{0}, \ m \in \mathbb{R}$

2 Monotonicity

 $X_1 \geq X_2, \ Y_1 \geq Y_2 \quad \Longrightarrow \quad \operatorname{RecV} @ \operatorname{R}_{\gamma}(X_1, Y_1) \leq \operatorname{RecV} @ \operatorname{R}_{\gamma}(X_2, Y_2) \qquad \forall \ X_1, X_2, Y_1, Y_2 \in L^0$

Positive homogeneity

 $\operatorname{RecV} \mathbb{Q} \mathrm{R}_{\gamma}(aX, aY) = a \cdot \operatorname{RecV} \mathbb{Q} \mathrm{R}_{\gamma}(X, Y) \qquad \forall \ X, Y \in L^{0}, \ a \in [0, \infty)$

Star-shapedness in the first component

 $\operatorname{RecV} \mathbb{O} \mathrm{R}_{\gamma}(aX, Y) \geq a \cdot \operatorname{RecV} \mathbb{O} \mathrm{R}_{\gamma}(X, Y) \qquad \forall X, Y \in L^{0}, Y \geq 0, a \in [1, \infty)$

Stefan Weber, Leibniz Universität Hannover

General Recovery Risk Measures

Definition

For every $\lambda \in [0, 1]$ consider a map $\rho_{\lambda} : \mathcal{X} \to \mathbb{R} \cup \{\infty\}$ and assume that $\rho_{\lambda_1} \ge \rho_{\lambda_2}$ whenever $\lambda_1 \le \lambda_2$. The recovery risk measure $\operatorname{Rec}\rho : \mathcal{X} \times \mathcal{X} \to \mathbb{R} \cup \{\infty\}$ is defined by $\operatorname{Rec}\rho(\mathcal{X}, \mathcal{Y}) := \sup_{\lambda \in [0, 1]} \rho_{\lambda}(\mathcal{X} + (1 - \lambda)\mathcal{Y})$.

- This definition contains many recovery risk measures that may possess additional desirable properties.
- An example is recovery average value at risk which is cash invariant in its first component, monotone, convex, subadditive, positively homogeneous, star shaped in its first component, and normalized.

Definition

The Recovery Average Value at Risk $\operatorname{RecAV}@R_{\gamma} : L^1 \times L^1 \to \mathbb{R} \cup \{\infty\}$ with increasing level function $\gamma : [0,1] \to (0,1)$ is defined by

```
\operatorname{RecAV}@\mathbf{R}_{\gamma}(X, Y) := \sup_{\lambda \in [0,1]} \mathsf{AV}@\mathbf{R}_{\gamma(\lambda)}(X + (1 - \lambda)Y).
```


Subadditivity and Limit Systems

- We consider a bank or an insurance company that consists of N subentities. For each date t = 0, 1 their assets, liabilities, and net asset value are denoted by A_t^i , L_t^i , and E_t^i , i = 1, ..., N.
- The consolidated figures are denoted by

$$A_t = \sum_{i=1}^N A_t^i, \quad L_t = \sum_{i=1}^N L_t^i, \quad E_t = \sum_{i=1}^N E_t^i.$$

• The firm may enforce entity-based risk constraints of the form

 $\operatorname{RecAV} \mathbb{Q} \mathbb{R}_{\gamma}(\boldsymbol{E}_{1}^{i}, \boldsymbol{L}_{1}^{i}) \leq \boldsymbol{c}^{i}, \quad i = 1, \ldots, N,$

where $c^1, \ldots, c^N \in \mathbb{R}$ are given risk limits.

• If the limits are chosen to satisfy $\sum_{i=1}^{N} c^{i} \leq 0$, then by subadditivity:

$$ext{RecAV} extsf{Q} ext{R}_{\gamma}(extsf{E}_1, L_1) \leq \sum_{i=1}^N ext{RecAV} extsf{Q} ext{R}_{\gamma}(extsf{E}_1^i, L_1^i) \leq \sum_{i=1}^N extsf{c}^i \leq 0.$$

1 Solvency Capital Regulation

- Risk-Sensitive Solvency Regimes
- Claims Recovery

2 Recovery Risk Measures

- Introducing Recovery Risk Measures
- Controlling Recovery
- Applications

house of insurance

Recovery of Claims – Example (cont.)

• We return to the simple example introduced above with

$$E_1^k(\omega) = egin{cases} 100-k & ext{if } \omega = g, \ k-100 & ext{if } \omega = b. \end{cases} \quad orall \ k \in [0,100]$$

• For a probability level $\beta \in (0, \alpha/2)$ and a desired recovery level $r \in (0, 1)$, we set

$$\gamma(\lambda) = egin{cases} eta & ext{if } \lambda \in [0, r), \ lpha & ext{if } \lambda \in [r, 1]. \end{cases}$$

• This implies that

$$\operatorname{RecV} \operatorname{\mathfrak{O}R}_{\gamma}(E_1^k, L_1) \leq 0 \iff k \geq 100r,$$

i.e., the maximal shareholder value is attained for k = 100r.

• Liabilities in state b are equal to 100. This implies that the recovery fraction in state b is equal to r.

ALM and Recovery – Another Example

- We consider a firm with a stylized balance sheet.
- Assets are deterministic, but the firm is capable of controlling the shape of the liability distribution:

• Liabilities L_1 follow a probability density function with two peaks. The area below the left peak equals 99.5% while the area below the right peak equals 0.5%.

ALM and Recovery – Another Example (2)

- Regulatory capital requirements
 - \blacktriangleright We focus on VaR at level 0.5% and AVaR at level 1%.
 - ► The corresponding solvency capital requirements admit analytic solutions:

$$\rho_{reg}(\Delta E_1) = \begin{cases} \mathsf{V}@\mathsf{R}_{0.5\%}(\Delta E_1) = \mathbf{a} - \mathbf{k} + E_0, \\ \mathsf{AV}@\mathsf{R}_{1\%}(\Delta E_1) = \left(\frac{1}{2} - \frac{1}{3}\sqrt{\frac{\alpha}{2(1-\alpha)}}\right)\mathbf{a} + \frac{\mathbf{b}+\mathbf{c}}{4} - \mathbf{k} + E_0. \end{cases}$$

- Recovery-based capital requirements
 - Fixing a regulatory level $\alpha \in (0, 1)$, we consider a piecewise constant recovery function

$$\gamma(\lambda) = egin{cases} eta & ext{if } \lambda \in [0, r) \ lpha & ext{if } \lambda \in [r, 1] \end{cases}, \ eta \in (0, lpha), \ r \in (0, 1), \ lpha = 0.5\%$$

 \blacktriangleright The solvency capital requirement corresponding to ${\rm RecV}@{\rm R}$ is

$$\operatorname{RecV} \mathbb{Q} \mathbb{R}_{\gamma}(\Delta E_1, L_1) = \max\left\{a, r \frac{b+c}{2}\right\} - k + E_0.$$

ALM and Recovery – Another Example (3)

• Recovery adjustments

In order to capture the extent to which the regulatory solvency capital requirements fail to control the recovery on liabilities we define the recovery adjustment

$$\operatorname{RecAdj}_{\gamma}(\Delta E_1, L_1) := \max \left\{ rac{\operatorname{RecV} @ \operatorname{R}_{\gamma}(\Delta E_1, L_1)}{
ho_{\operatorname{reg}}(\Delta E_1)}, 1
ight\}.$$

- This quantity is the maximum of 1 and the multiplicative factor by which regulatory requirements would have to be adjusted to guarantee the considered recovery levels.
- The case study will show that recovery adjustments can be very high providing alternative evidence that conventional solvency requirements do not properly protect recovery.

ALM and Recovery – Another Example (4)

• Recovery adjustments (cont.)

We ask how large the recovery adjustments may become, if a firm's asset-liability-management is constrained by the following conditions:

(1)	Solvent profile under $ ho_{reg}$	$ ho_{\mathit{reg}}(\mathit{E}_1) \leq 0$
(2)	Capital requirement under $ ho_{reg}$	$ ho_{\it reg}(\Delta E_1) > 0$
(3)	Solvent profile under $\mathrm{RecV} @ \mathrm{R}_{\gamma}$	$\operatorname{RecV} \operatorname{\texttt{Q}R}_\gamma(\mathit{E}_1, \mathit{L}_1) \leq 0$
(4)	Capital requirement under ${ m RecV}$ ${ m @R}_{\gamma}$	$\mathrm{Rec}\mathrm{V}\mathbf{@}\mathrm{R}_{\gamma}(\Delta E_{1},L_{1})>0$
(5)	V@R $_{\alpha}$ insufficient to control claims recovery	$\operatorname{RecV} \operatorname{\mathfrak{O}R}_{\gamma}(\mathit{E}_1, \mathit{L}_1) > \operatorname{V} \operatorname{\mathfrak{O}R}_{\alpha}(\mathit{E}_1)$
(6)	Range of admissible regulatory solvency ratios	$m{s_{min}} \leq rac{E_0}{ ho_{reg}(\Delta E_1)} \leq m{s_{max}}$

More precisely, we focus on the optimization problem

max $\operatorname{RecAdj}_{\gamma}(\Delta E_1, L_1)$ over A_1 and L_1 as specified above

under the constraints (1) to (6).

ALM and Recovery – Another Example (5)

Answer

- The optimal value of the problem is bounded from above by s_{max} .
- If $\rho_{reg} = V@R_{0.5\%}$, this upper bound is attained for every choice of γ .
- If $\rho_{\text{reg}} = \text{AV@R}_{1\%}$, this upper bound is attained for special choices of γ , e.g., when $\beta \geq \frac{\alpha}{2}$ and $\frac{1}{4}\sqrt{\frac{2\alpha}{\alpha-\beta}} < r \leq \frac{1}{4}\frac{\sqrt{2\alpha}}{\sqrt{2\alpha}-\sqrt{\alpha-\beta}}\frac{1}{\frac{1}{2}+\frac{1}{3}\sqrt{\frac{\alpha}{2(1-\alpha)}}}.$
- If companies are capable and free to manage their balance sheet, classical solvency tests cannot control recovery.
- In fact, classical solvency tests permit firms to adopt strategies that correspond to the most expensive recovery adjustments under the constraints (1) (6).

1 Solvency Capital Regulation

- Risk-Sensitive Solvency Regimes
- Claims Recovery

2 Recovery Risk Measures

- Introducing Recovery Risk Measures
- Controlling Recovery
- Applications

Performance Measurement

- Return on risk-adjusted capital (RoRaC)
 - ► For a subadditive and positively homogeneous recovery risk measure Rec*ρ*, the associated RoRaC is defined by

$$\operatorname{RoRaC}(\Delta E_1, L_1) = \frac{\mathbb{E}(\Delta E_1)}{\operatorname{Rec}\rho(\Delta E_1, L_1)}.$$

- This quantity measures the expected return per unit of economic capital expressed in terms of the risk measure Recρ.
- The goal of the firm is to improve its RoRaC.
- Subentities
 - Denote the net asset values and liabilities of the subentities at time t = 0, 1 by E_t^i and L_t^i for i = 1, ..., N, respectively.
 - Total net asset values and liabilities aggregate the subentities:

$$L_t = \sum_{i=1}^{N} L_t^i, \quad E_t = \sum_{i=1}^{N} E_t^i, \quad t = 0, 1$$

Performance Measurement (cont.)

• Suitable allocation

- We seek an allocation of economic capital $\kappa^i = \text{Rec}\rho^{\Delta E_1, L_1}(\Delta E_1^i, L_1^i)$, i = 1, ..., N, that satisfies:
 - Full allocation
 Diversification
 RoRaC-compatibility

$$\sum_{i=1}^{N} \kappa^{i} = \operatorname{Rec}\rho(\Delta E_{1}, L_{1});$$

$$\kappa^{i} \leq \operatorname{Rec}\rho(\Delta E_{1}^{i}, L_{1}^{i}) \text{ for all } i = 1, \dots, N;$$

If for some $i = 1, \dots, N$,

$$ext{RoRaC}^i := rac{\mathbb{E}(\Delta E_1^i)}{\kappa^i} \ > \ ext{RoRaC}(\Delta E_1, L_1) \quad (ext{resp.} \ <),$$

then there exists $\varepsilon > 0$ such that for every $h \in (0, \varepsilon)$

 $\operatorname{RoRaC}(\Delta E_1 + h\Delta E_1^i, L_1 + hL_1^i) > \operatorname{RoRaC}(\Delta E_1, L_1)$ (resp. <).

Solution

- Suitable allocations are Euler allocations: $\kappa^{i} = \frac{d}{db} \operatorname{Rec} \rho(\Delta E_{1} + h\Delta E_{1}^{i}, L_{1} + hL_{1}^{i})|_{b=0}$
- ► For suitable recovery functions they can be computed for RecAV@R.

Portfolio Optimization

- Risk measures are an important instrument to limit downside risk in portfolio optimization problems.
 - This idea is related to the classical Markowitz problem in which standard deviation quantifies the risk. Efficient frontiers characterize the best tradeoffs between return and risk.
- Recovery risk measures may successfully be applied to portfolio optimization in practice.
 - ► For RecAV@R with suitable recovery functions the characterization of the efficient frontier may, on the basis of a suitable minimax theorem, be reduced to the minimization of a linear function on a convex polyhedron.

Portfolio Optimization (2)

- Assets and liabilities
 - We consider k = 1, ..., K assets with prices S_t^k , t = 0, 1.
 - Random one-period returns are denoted by R^k such that

$$S_1^k = S_0^k \cdot (1 + R^k).$$

• An investor invests a fraction $x^k > 0$ of her total budget b > 0 into each product k. The total value of her assets at time t = 1 is thus equal to

$$b\cdot\sum_{k=1}^{K}x^{k}(1+R^{k}) = b\cdot\left(1+\sum_{k=1}^{K}x^{k}R^{k}
ight).$$

We set $\mathbf{R} = (\mathbf{R}^1, \dots, \mathbf{R}^K)^\top$ and $\mathbf{x} = (\mathbf{x}^1, \dots, \mathbf{x}^K)^\top$.

▶ In addition, we suppose that the investor's liabilities at time t = 1 amount to a random fraction Z of the initial budget, i.e., the liabilities are equal to $b \cdot Z$.

Portfolio Optimization (3)

• Efficient frontier

- ▶ We are interested in optimal combinations of return and downside risk the *efficient frontier* but with risk measured by RecAV@R.
- > This problem can equivalently be stated as the minimization of risk for a given expected return.

• Expected return

The expected future net asset value of the investor equals

$$b \cdot \left(1 + \sum_{k=1}^{K} x^{k} \mathbb{E}(R^{k}) - \mathbb{E}(Z)\right)$$

• A target expected return can be achieved by requiring for some $c \in \mathbb{R}$ that

$$\sum_{k=1}^{K} x^{k} \mathbb{E}(R^{k}) = c$$

Portfolio Optimization (4)

• Downside risk

We are interested in computing and optimizing

$$\operatorname{RecAV} \operatorname{QR}_{\gamma} \left(b \cdot \left[1 + \sum_{k=1}^{K} x^{k} R^{k} - Z \right], bZ \right) = -b + b \cdot \operatorname{RecAV} \operatorname{QR}_{\gamma} \left(\sum_{k=1}^{K} x^{k} R^{k} - Z, Z \right).$$

▶ We focus on the special case of piecewise-constant recovery function. In this case, RecAV@R is a maximum of finitely many terms:

$$\operatorname{RecAV} \mathbb{Q} \operatorname{R}_{\gamma} \left(\sum_{k=1}^{K} x^{k} R^{k} - Z, Z \right) = \max_{i=1,\ldots,n+1} \operatorname{AV} \mathbb{Q} \operatorname{R}_{\alpha_{i}} \left(\sum_{k=1}^{K} x^{k} R^{k} - r_{i} Z \right).$$

Portfolio Optimization (5)

- A minimax theorem
 - ▶ For convenience, for i = 1, ..., n + 1 we define auxiliary functions

$$\Psi^{i}(\mathbf{x}, \mathbf{v}) = \frac{1}{\alpha_{i}} \cdot E\left(\left[\mathbf{v} - \sum_{k=1}^{K} \mathbf{x}^{k} \mathbf{R}^{k} - \mathbf{r}_{i} \mathbf{Z}\right]^{+}\right) - \mathbf{v}.$$

This allows us to write

$$\operatorname{RecAV} \mathbb{Q} \operatorname{R}_{\gamma} \left(\sum_{k=1}^{K} x^{k} R^{k} - Z, Z \right) = \max_{i=1,\ldots,n+1} \min_{\nu \in \mathbb{R}} \Psi^{i}(\boldsymbol{x}, \nu).$$

Minimax theorem

The following minimax equality holds:

$$\max_{i=1,\ldots,n+1} \min_{\nu \in \mathbb{R}} \Psi^{i}(\boldsymbol{x},\nu) = \min_{\nu \in \mathbb{R}} \max_{i=1,\ldots,n+1} \Psi^{i}(\boldsymbol{x},\nu).$$

Stefan Weber, Leibniz Universität Hannover

Portfolio Optimization (6)

• Computing the efficient frontier

▶ Characterizing the efficient frontier — consisting of pairs of returns and downside risk — is equivalent to minimizing the function in minimax theorem additionally over $x \in X$ where

$$\mathcal{X} = \{ oldsymbol{x} \in [0,\infty)^K; \ \sum_{k=1}^K x^k = 1, \ \sum_{k=1}^K x^k \, \mathbb{E}(\mathcal{R}^k) = c \}$$

is a convex polyhedron.

This problem can be reformulated as

$$\min_{(\mathbf{x},\mathbf{v},\Upsilon)\in\mathcal{X}\times\mathbb{R}\times\mathbb{R}} \left\{\Upsilon; \ \Psi^{i}(\mathbf{x},\mathbf{v})\leq\Upsilon, \ i=1,\ldots,n+1\right\}.$$

Portfolio Optimization (7)

- Computing the efficient frontier (cont.)
 - In typical applications in practice, these expectations are approximated via Monte Carlo simulations.
 - This allows to reformulate the problem as a linear program:

min Υ

s.t.
$$\begin{aligned} \frac{1}{M \cdot \alpha_i} \cdot \sum_{m=1}^{M} u^{i,m} - v &\leq \Upsilon, \quad i = 1, \dots, n+1, \\ u^{i,m} &\geq v - \sum_{k=1}^{K} x^k R^{k,m} - r_i Z^m, \quad i = 1, \dots, n+1, \ m = 1, \dots, M, \\ u^{i,m} &\geq 0, \quad i = 1, \dots, n+1, \ m = 1, \dots, M, \\ \text{over} \qquad (\mathbf{x}, v, \Upsilon) \in \mathcal{X} \times \mathbb{R} \times \mathbb{R}, \end{aligned}$$

where $(\mathbf{R}^1, Z^1), \ldots, (\mathbf{R}^M, Z^M)$ are *M* independent simulations of the pair (\mathbf{R}, Z) .

Stefan Weber, Leibniz Universität Hannover

1 Solvency Capital Regulation

- Risk-Sensitive Solvency Regimes
- Claims Recovery

2) Recovery Risk Measures

- Introducing Recovery Risk Measures
- Controlling Recovery
- Applications

- Recovery risk measures successfully control recovery.
- O They can successfully be applied to solvency regulation, performance-based management, and portfolio optimization.
- 9 Future research needs to study their implementation and simulation in complex ALM-models.

house of insurance

Thank you for your attention!

- Cosimo Munari, Stefan Weber, & Lutz Wilhelmy (2021):
 'Capital Requirements and Claims Recovery: A New Perspective on Solvency Regulation'
- Sojung Kim & Stefan Weber (2021):
 'Simulation Methods for Robust Risk Assessment and the Distorted Mix Approach'

The papers are available at: https://www.insurance.uni-hannover.de/weber