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1. Extreme-value theory for heavy-tailed distributions

A distribution is said to be heavy-tailed if the survival function is
regularly-varying i.e.

F(x) = x7Y70(x), x > 0,
where

@ 7 > 0 is called the tail-index (or extreme-value index). The larger « is, the
heavier the tail: v > 1/2 no variance, v > 1 no expectation.

@ / is a slowly-varying function. It is positive and such that

£(xt)

75 —1as x — oo forall t > 0.

Examples: Pareto (where ¢ is constant), Cauchy (where v = 1), Student t, (where
~v=1/v), Burr(e, 8), (where v = 1/(af)), Fisher, ...
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Estimation of extreme quantiles.

Given a sample of iid observations Xi,. .., X, from a survival function F,
estimate q(p,) such that F(q(p,)) = pn with np, — 0 as n — oc.

Notation: X; , < --- < X, , associated order statistics.

Such extreme quantiles are asymptotically almost surely outside the sample:

P(q(pn) > Xn,n) = P"(X1 < q(pn)) = F"(q(pn))
(1 - pn)n - exp(nlog(l - pn))
= exp(—npn(1+0(1))

— 1

as n — oQ.

Need for dedicated statistical tools.
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Weissman extrapolation device

@ From the regular variation property:

= :t_1/7@—>t_1/7 as x — oo for all t > 0.
F(x) £(x)

o Letting x = g(a,) and xt = g(p,), an approximation can be derived for

extreme quantiles:
pn\
n
ot = () ()

for all a, > pp.

@ The idea is then to choose a, = k,/n such that k, = na, — oo and q(«,) is
then an intermediate quantile. It can be estimated by an order statistics
Xn—k,,n: leading to Weissman estimator:

-
N n
CI(Pn) = Xn—kn,n (:n) .

Asymptotic normality:

@ Need for an estimator 4 of the tail-index.
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Hill estimator

@ Still using the regular variation property: For all i =0,..., k, — 1,

log q(i/n) — log q(kn/n) = v log(ka/i)-

@ The intermediate quantiles are estimated by their empirical counterparts:

log Xn—i.n — log Xn—k,.n = 7 log(kn/i),

@ The quality of these approximations can be assessed graphically on a log
quantile-quantile plot.
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Simulation of a sample of size n = 500 from a Student t, distribution (y = 1/2).
Here, k, = 100.

Horizontally: log(k,/i). Vertically: log X,—; , — log Xp—k, n for i =0,...,k, — 1,
y = yx and

7/ 22



Hill estimator

@ Still using the regular variation property: For all i =0,..., k, — 1,
log q(i/n) — log q(kn/n) == ~log(ka/).
@ The intermediate quantiles are estimated by their empirical counterparts:

|0g Xn—i,n - |Og Xn—kn,n = ’VlOg(kn/i)a
@ The quality of these approximations can be assessed graphically on a log
quantile-quantile plot.
@ The estimator of the slope can be simplified as

kny—1
. 13
A(ky) = P g log Xn—i.n — log Xn—k,.n-
T i=o

8/ 22



lllustration on simulated data.
3 Burr distributions, n = 500, computation on 1000 replications.

(a, B) = (40,1/10), (e, B) = (8,1/2), (o, ) = (4, 1).
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Left: Mean Hill estimator as a function of k,,
Right: MSE of the associated Weissman estimator as a function of k.

In all three cases: but very different behaviours.
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Second-order condition

(SO) There exist a function B verifying B(x) — 0 as x — oo with ultimately
constant sign and p < 0 such that, for all t > 1,

xll[noo ﬁ log (i(():))) = K,(t) = /lt uP~du.

It can be shown that, necessarily, |B| is regularly varying with index p, referred to
as the second-order parameter. The smaller p is, the faster the convergence
U(xt)/l(x) = 1 as x — 0.

Theorem 1 (Asymptotic normality: de Haan & Ferreira (2006), Theorem 3.2.5)

Suppose (SO) holds. If k, — oo with k,/n — 0 and /k,B(n/k,) — A\ < oo, then

Vkn(3(kn) = 7) =2 N(A/(1 = p),72).

The asymptotic variance is 72 /k, (a decreasing function of k,) while the
asymptotic bias is B(n/k,)/(1 — p) (an increasing function of k).
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lllustration on simulated data.
3 Burr distributions, n = 500, computation on 1000 replications.
(e, B) = (40,1/10), p = ~10 (o, 8) = (8,1/2), p = ~2, (@, 8) = (4, 1), p= —L.
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Left: Mean Hill estimator as a function of k,,
Right: MSE of the associated Weissman estimator as a function of k.

In all three cases: , behaviour mainly driven by p.
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lllustration on real data.

Log-returns of the Financial Times Stock Exchange 100 Index (FTSE100),
1935-1996. Share index of the 100 companies listed on the London Stock
Exchange with the highest market capitalisation.

® From 193501945 . — From 1935 to 1945

From 1945 to 1955
05{ — From 1955 t0 1965
— From 1965 t0 1975

— From 1975 to 1985
® From 1985 t0 1996 . — From 1985 to 1996

Left: log quantile-quantile plots on six different time periods (k,/n = 5%),
Right: corresponding Hill estimators as functions of k.

= High heterogeneity in the tails.
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2. Mixture of heavy-tailed distributions

Model. We assume:

@ A heavy-tailed distribution for X conditionally on a tail-index v € [y1,72]:
F(x|7):=P(X > x|7) =x"7(x), x >0,

with 0 < 71 < 2 < +00 and where { is a slowly-varying function.

@ A prior distribution on v € [y1,72]:

() = (2 =) Hx (1/ (2 = 7)),
for some B > 0 where /. is a slowly-varying function.
Note that 7(-) is regularly-varying in the neighbourhood of its upper endpoint ;.

- () = oo as v — 2 when 5 < 1,
-7(y) = 0 as vy — v, when § > 1.
- The intermediate case 5 = 1 corresponds to a uniform-like behaviour.
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Unconditional tails. The unconditional distribution of X is given by

:E(X) =P(X > x) ={(x) b Xil/’yﬂ'(’}/)d’y,

1

and its tail behaviour is provided in the next result:

Under the above assumptions,

F(x) ~ c1(71,72, B) x /7 (log x) P (log x){(x),

as x — +o0, with c1(71,72,8) = 15" (2 — 1)~ T(B).

@ The unconditional distribution is also , with tail-index v».

@ The associated slowly-varying function is given by

U(x) ~ c1(71, 72, B) (log x) 7€ (log x)£(x).
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Asymptotic behaviour of Hill estimator on the mixture model.
It is easily seen that in

Z(X) ~ C1(71>7276) E(X),
the part is the dominant component. Thus, #(-) also verifies (SO) with
Bl)= -2 o,
log x

and second-order parameter 5 = 0, which is the worst scenario from the bias point
of view. As a consequence of Theorem 1, Hill estimator is still asymptotically
Gaussian in this mixture context:

Theorem 3

Suppose { verifies (SO) with p < 0 and the mixture assumptions hold.
If ky — oo with k,/n — 0 and \/k,B(n/k,) — X\ < oo, then

Vka(Akn) = 72) -5 N (A, 3).
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There is a

A
Vkn

E(5(kn)) = 72 (1 - |og(nﬁ/k)> '

For instance 8 =1 and k,/n = 10% yield a relative error close to 43%.

B2

~ Bk = ey

meaning that

A Jackknife estimator.

@ Compute Hill estimator on two disjoint sub-samples with respective sizes
ny = [n°| and ny = n— ny, for some € € (0,1), to get F1(kn,) and F2(kp,).

@ The Jackknife estimator is then defined as

- Yo (kn,) — € A1(k
'Ys(knlaknz) _ ’72( nz)l 7671( f71)

(to make the above asymptotic bias vanish).
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Asymptotic behaviour of Jacknife estimator on the mixture model.

Theorem 4

Suppose { verifies (SO) with p < 0 and the mixture assumptions hold.
If kn, — oo with k. /nj — 0 and \/kn,B(n;/kn,) — A; < 00, j € {1,2}, then

\/k»m(ﬁs(knu kng) - 72) i> N ( 5 73) c

Estimator asymptotically unbiased.

Approximation of extreme quantiles. From Theorem 2, as x — 400,

M ~ t_l/"/z
F(x) ’

and thus the original approximation of extreme quantiles can also be refined:

where np, — 0 while na,, — c.
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A refined Weissman estimator for extreme quantiles. Let «,, = k,/n and

—%2
o~ Pn
Q(Pn) - ank,,.,n () 5

Qp

where 4, and [J are appropriate estimators of v, and /J respectively.

Theorem 5

Suppose ¢ verifies (SO) with p < 0 and the mixture assumptions hold.
Let k, = [(Inn)?|, an = ky/n and p, = 1/(n(In n)®) with a > 2 and b > 0.

Suppose we are given two estimators 7 and %, such that and
V(52 — 72) L N(0, 02), for some v > 0. Then,
kn q n
_Vkn (‘7(” ) _ 1> 5 N(0,0%(a + b)?),
loglogn \ q(pn)

as n — o0.

- §(pn) inherits its asymptotic normality from 4.
- A consistent estimator of /J has been proposed, although not presented here.
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Illustration on simulated data. Estimation of the tail-index.

Pareto distribution (B(x) =0) 71 =1/2, 72 =2, § =2 and n = 5,000.

log-MSE Hill Estimators (PurePareto) wrt k, gammal=0.5, gamma2=2 .0, beta=2.0

— Simple Hill estimator
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\ — Jacknife estimator (eps=0.3)
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15 | — Jacknife estimator (eps=0.5)
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Log-MSE (computed on 500 replications) as a function of k.
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Illustration on simulated data. Estimation of the tail-index.

Translated Pareto distribution (B(x) < 0) y1 =1/2, 72 =2, 8 =2 and n = 5,000.

log-MSE Hill Estimators (TransPareto) wrt k, gammal=05, gamma2=2.0, beta=2.0

— Simple Hill estimator

Dauble Hil estimator

—— Jacknife estimator (eps=0.3)

— Jacknife estimator (eps=0.4)

\ Jacknife estimator (eps=0.5)

| — Jacknife estimator (eps=0.5)

|
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Log-MSE (computed on 500 replications) as a function of k.
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Illustration on simulated data. Estimation of the tail-index.
Student distribution (B(x) > 0) v1 =1/2, v =2, § =2 and n = 5, 000.

log-MSE Hill Estimators ( ) wrt k, gammal=05, gamma2=20, beta=2.0

—— Simple Hill estimator
20 | Double Hill estimator
\ —— Jacknife estimator (eps=03)
\ — Jacknife estimator (eps=0.4)
| Jacknife estimator (eps=0.5)
15 | — Jacknife estimator (eps=0.6)
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Log-MSE (computed on 500 replications) as a function of k.

21/ 22



lllustration on real data. Comparison of Hill and tail-index estimators
on the FTSE100 dataset, whole period 1935-1996.

—— Simple Hill estimator
Jacknife estimator (eps=0.5)
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: nice stability when k, € {200, ...,600} pointing towards y ~ 0.37.
Hill: no stability and under-estimation suspected.
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