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1. Extreme-value theory for heavy-tailed distributions

A distribution is said to be heavy-tailed if the survival function is
regularly-varying i.e.

F̄ (x) = x−1/γ`(x), x > 0,

where

γ > 0 is called the tail-index (or extreme-value index). The larger γ is, the
heavier the tail: γ > 1/2 no variance, γ > 1 no expectation.

` is a slowly-varying function. It is positive and such that

`(xt)

`(x)
→ 1 as x →∞ for all t > 0.

Examples: Pareto (where ` is constant), Cauchy (where γ = 1), Student tν (where

γ = 1/ν), Burr(α, β), (where γ = 1/(αβ)), Fisher, ...
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Goal: Estimation of extreme quantiles.

Given a sample of iid observations X1, . . . ,Xn from a survival function F̄ ,
estimate q(pn) such that F̄ (q(pn)) = pn with npn → 0 as n→∞.

Notation: X1,n ≤ · · · ≤ Xn,n associated order statistics.

Such extreme quantiles are asymptotically almost surely outside the sample:

P(q(pn) > Xn,n) = Pn(X1 < q(pn)) = F n(q(pn))

= (1− pn)n = exp(n log(1− pn))

= exp(−npn(1 + o(1))

→ 1

as n→∞.

Need for dedicated statistical tools.
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Weissman extrapolation device (Weissman, 1978).

From the regular variation property:

F̄ (xt)

F̄ (x)
= t−1/γ

`(xt)

`(x)
→ t−1/γ as x →∞ for all t > 0.

Letting x = q(αn) and xt = q(pn), an approximation can be derived for
extreme quantiles:

q(pn) ' q(αn)

(
pn
αn

)−γ
,

for all αn ≥ pn.

The idea is then to choose αn = kn/n such that kn = nαn →∞ and q(αn) is
then an intermediate quantile. It can be estimated by an order statistics
Xn−kn,n, leading to Weissman estimator:

q̂(pn) = Xn−kn,n

(
npn
kn

)−γ̂
.

Asymptotic normality: de Haan & Ferreira (2006), Theorem 4.4.6.

Need for an estimator γ̂ of the tail-index.
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Hill estimator (Hill, 1975).

Still using the regular variation property: For all i = 0, . . . , kn − 1,

log q(i/n)− log q(kn/n) ' γ log(kn/i).

The intermediate quantiles are estimated by their empirical counterparts:

logXn−i,n − logXn−kn,n ' γ log(kn/i),

The quality of these approximations can be assessed graphically on a log
quantile-quantile plot.
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Simulation of a sample of size n = 500 from a Student t2 distribution (γ = 1/2).
Here, kn = 100.

Horizontally: log(kn/i). Vertically: logXn−i,n − logXn−kn,n for i = 0, . . . , kn − 1,

y = γx and y = γ̂x .
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Hill estimator (Hill, 1975).

Still using the regular variation property: For all i = 0, . . . , kn − 1,

log q(i/n)− log q(kn/n) ' γ log(kn/i).

The intermediate quantiles are estimated by their empirical counterparts:

logXn−i,n − logXn−kn,n ' γ log(kn/i),

The quality of these approximations can be assessed graphically on a log
quantile-quantile plot.

The estimator of the slope can be simplified as

γ̂(kn) :=
1

kn

kn−1∑
i=0

logXn−i,n − logXn−kn,n.
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Illustration on simulated data.

3 Burr distributions, n = 500, computation on 1000 replications.

(α, β) = (40, 1/10), (α, β) = (8, 1/2), (α, β) = (4, 1).
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Left: Mean Hill estimator as a function of kn,
Right: MSE of the associated Weissman estimator as a function of kn.

In all three cases: γ = 1/(αβ) = 1/4 but very different behaviours.
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Second-order condition

(SO) There exist a function B verifying B(x)→ 0 as x →∞ with ultimately
constant sign and ρ ≤ 0 such that, for all t > 1,

lim
x→∞

1

B(x)
log

(
`(xt)

`(x)

)
= Kρ(t) :=

∫ t

1

uρ−1du.

It can be shown that, necessarily, |B| is regularly varying with index ρ, referred to
as the second-order parameter. The smaller ρ is, the faster the convergence
`(xt)/`(x)→ 1 as x →∞.

Theorem 1 (Asymptotic normality: de Haan & Ferreira (2006), Theorem 3.2.5)

Suppose (SO) holds. If kn →∞ with kn/n→ 0 and
√
knB(n/kn)→ λ <∞, then√

kn(γ̂(kn)− γ)
d−→ N (λ/(1− ρ), γ2).

The asymptotic variance is γ2/kn (a decreasing function of kn) while the
asymptotic bias is B(n/kn)/(1− ρ) (an increasing function of kn).
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Illustration on simulated data.

3 Burr distributions, n = 500, computation on 1000 replications.

(α, β) = (40, 1/10), ρ = −10 (α, β) = (8, 1/2), ρ = −2, (α, β) = (4, 1), ρ = −1.
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Left: Mean Hill estimator as a function of kn,
Right: MSE of the associated Weissman estimator as a function of kn.

In all three cases: γ = 1/(αβ) = 1/4, behaviour mainly driven by ρ.
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Illustration on real data.

Log-returns of the Financial Times Stock Exchange 100 Index (FTSE100),

1935-1996. Share index of the 100 companies listed on the London Stock

Exchange with the highest market capitalisation.

Left: log quantile-quantile plots on six different time periods (kn/n = 5%),
Right: corresponding Hill estimators as functions of kn.

=⇒ High heterogeneity in the tails.
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2. Mixture of heavy-tailed distributions

Model. We assume:

A heavy-tailed distribution for X conditionally on a tail-index γ ∈ [γ1, γ2]:

F̄ (x | γ) := P(X ≥ x | γ) = x−1/γ`(x), x > 0,

with 0 < γ1 < γ2 < +∞ and where ` is a slowly-varying function.

A prior distribution on γ ∈ [γ1, γ2]:

π(γ) = (γ2 − γ)β−1`π(1/(γ2 − γ)),

for some β > 0 where `π is a slowly-varying function.

Note that π(·) is regularly-varying in the neighbourhood of its upper endpoint γ2.

- π(γ)→∞ as γ → γ2 when β < 1,
- π(γ)→ 0 as γ → γ2 when β > 1.

- The intermediate case β = 1 corresponds to a uniform-like behaviour.
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Unconditional tails. The unconditional distribution of X is given by

F̄ (x) := P(X ≥ x) = `(x)

∫ γ2

γ1

x−1/γπ(γ)dγ,

and its tail behaviour is provided in the next result:

Theorem 2

Under the above assumptions,

F̄ (x) ∼ c1(γ1, γ2, β) x−1/γ2(log x)−β`π(log x)`(x),

as x → +∞, with c1(γ1, γ2, β) = γ2β2 (γ2 − γ1)−β Γ(β).

The unconditional distribution is also heavy-tailed, with tail-index γ2.

The associated slowly-varying function is given by

˜̀(x) ∼ c1(γ1, γ2, β)(log x)−β`π(log x)`(x).
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Asymptotic behaviour of Hill estimator on the mixture model.
It is easily seen that in

˜̀(x) ∼ c1(γ1, γ2, β)(log x)−β`π(log x)`(x),

the orange part is the dominant component. Thus, ˜̀(·) also verifies (SO) with

B̃(x) = − βγ2
log x

, x > 0,

and second-order parameter ρ̃ = 0, which is the worst scenario from the bias point
of view. As a consequence of Theorem 1, Hill estimator is still asymptotically
Gaussian in this mixture context:

Theorem 3

Suppose ` verifies (SO) with ρ < 0 and the mixture assumptions hold.
If kn →∞ with kn/n→ 0 and

√
knB̃(n/kn)→ λ <∞, then√

kn(γ̂(kn)− γ2)
d−→ N (λ, γ22).
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There is a strong negative asymptotic bias:

λ√
kn
∼ B̃(n/kn) = − βγ2

log(n/kn)
,

meaning that

E(γ̂(kn)) ' γ2
(

1− β

log(n/kn)

)
.

For instance β = 1 and kn/n = 10% yield a relative error close to 43%.

A Jackknife estimator.

Compute Hill estimator on two disjoint sub-samples with respective sizes
n1 = bnεc and n2 = n − n1, for some ε ∈ (0, 1), to get γ̂1(kn1) and γ̂2(kn2).

The Jackknife estimator is then defined as

γ̃ε(kn1 , kn2) =
γ̂2(kn2)− ε γ̂1(kn1)

1− ε

(to make the above asymptotic bias vanish).
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Asymptotic behaviour of Jacknife estimator on the mixture model.

Theorem 4

Suppose ` verifies (SO) with ρ < 0 and the mixture assumptions hold.
If knj →∞ with knj/nj → 0 and

√
knj B̃(nj/knj )→ λj <∞, j ∈ {1, 2}, then

√
kn1(γ̃ε(kn1 , kn2)− γ2)

d−→ N

(
0, 2

(
ε

1− ε

)2

γ22

)
.

Estimator asymptotically unbiased.

Approximation of extreme quantiles. From Theorem 2, as x → +∞,

F̄ (xt)

F̄ (x)
∼ t−1/γ2

(
log(xt)

log(x)

)−β
,

and thus the original approximation of extreme quantiles can also be refined:

q(pn) ' q(αn)

(
pn
αn

)−γ2 ( log pn
logαn

)−βγ2
,

where npn → 0 while nαn →∞.
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A refined Weissman estimator for extreme quantiles. Let αn = kn/n and

q̃(pn) = Xn−kn,n

(
pn
αn

)−γ̂2 ( log pn
logαn

)−β̂γ̂2
,

where γ̂2 and β̂ are appropriate estimators of γ2 and β respectively.

Theorem 5

Suppose ` verifies (SO) with ρ < 0 and the mixture assumptions hold.
Let kn = b(ln n)ac, αn = kn/n and pn = 1/(n(ln n)b) with a ≥ 2 and b > 0.

Suppose we are given two estimators β̂ and γ̂2 such that β̂
P−→ β and√

kn(γ̂2 − γ2)
d−→ N (0, σ2), for some v > 0. Then,

√
kn

log log n

(
q̃(pn)

q(pn)
− 1

)
d−→ N (0, σ2(a + b)2),

as n→∞.

- q̃(pn) inherits its asymptotic normality from γ̂2.
- A consistent estimator of β has been proposed, although not presented here.
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Illustration on simulated data. Estimation of the tail-index.

Pareto distribution (B(x) = 0) γ1 = 1/2, γ2 = 2, β = 2 and n = 5, 000.

Log-MSE (computed on 500 replications) as a function of kn.
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Illustration on simulated data. Estimation of the tail-index.

Translated Pareto distribution (B(x) < 0) γ1 = 1/2, γ2 = 2, β = 2 and n = 5, 000.

Log-MSE (computed on 500 replications) as a function of kn.
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Illustration on simulated data. Estimation of the tail-index.

Student distribution (B(x) > 0) γ1 = 1/2, γ2 = 2, β = 2 and n = 5, 000.

Log-MSE (computed on 500 replications) as a function of kn.
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Illustration on real data. Comparison of Hill and Jackknife tail-index estimators

on the FTSE100 dataset, whole period 1935-1996.

Jackknife: nice stability when kn ∈ {200, . . . , 600} pointing towards γ ' 0.37.

Hill: no stability and under-estimation suspected.
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