DE LA RECHERCHE À L'INDUSTRIE

622

Adaptive Multilevel Splitting for Particle Transport

Eric Dumonteil*, Kevin Frohlicher, Tony Lelièvre, Henri Louvin , Loic Thulliez

* Institut de Recherche sur les Lois Fondamentales de l'Univers, CEA, Université Paris-Saclay

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

Collaborative work between :

L. Thulliez (CEA/DRF/IRFU/DPhN)

Past & undergoing publications

- Louvin et al, EPJ Nuclear Sci. Technol. Vol 3 (2017) Nowak et al, Nuc. Sci. Eng., Vol 193 (2019)
- Mancusi et al, Trans. Am. Nuc. Soc., Vol. 120 (2019) Frohlicher et al, undergoing work (2021)

Thulliez et al, undergoing work (2021)

Cea Outline

Context

- Motivations
- AMS for MC particle transport codes: basic ideas
- Implementation & validation

Adaptation of AMS for particle transport

- On-the-fly scoring
- Branching tracks
- Multi-particles/particles cascades
- Towards self-learning of the cost function

Use of AMS in reactor physics

- Chain reaction & population control
- Spatial correlations
- AMS & branchless collisions
- Results

Context

- > Motivations
- > AMS for MC particle transport codes: basic ideas
- Implementation & validation

MONTE-CARLO FOR SHIELDING & MEDICAL APPLICATIONS

- □ Particle physics in its large sense: radiation protection, medical, fundamental, etc.
- **Boltzmann equation** in non-reproductive media and fixed sources
- □ Neutrons, photons, électrons, muons, etc. at all energies
- □ Main challenge: variance reduction w.r.t. x and E parameters

Radioactive waste management

Ex-core dosimetry & PWR vessel fluence

Radiotherapy (opengatecollaboration.org)

CO2 MONTE-CARLO PARTICLE TRANSPORT FOR REACTOR PHYSICS

- **Static linear Boltzmann equation** in fissile media (no fixed sources)
- Neutrons between 0 and 20 MeV
- □ Main challenge: finding eigenvalues and eigenvectors while tackling with correlations

Originates from applied mathematics applied to molecular dynamic

- (Cerou et al, 2007)
- (Cerou et al, 2011)
- (Aristoff et al, 2015)
- Adaptation to particle transport
 - CEMRACS@CIRM 2013 (Lelievre & Dumonteil)
 - (Louvin, Dumonteil, Lelievre, Rousset 2017)
 - (Louvin, Mancusi & Dumonteil 2019)

Objective of the different developments presented is to fit in the framework of AMS for discrete Markov chains detailed in (Brehier et al, 2016)

WHAT ARE PARTICLE TRACKS

- □ Term "tracks" originates from first bubble chambers
- □ Parameter space (position, direction, energy, time, particle type)
- Non-charged particle tracks are
 - Markovian everywhere in (position, direction, energy)
 - Markovian at collision points i {(position, energy)};
 - Markovian at collision points i {(position, direction, energy)}

Tracks left by a neutrino interacting with a neutron

AMS for discrete Markov chains is the most suitable AMS « flavor »

- **c** score is assigned to each neutron track (= Max of ξ over whole trajectory)
- □ tracks are ranked according to their score
- □ the k-th "worst" track defines the new splitting level
- **the k tracks having scores lesser than this level are deleted**
- ↓ k tracks are randomly selected and duplicated at the splitting level
- □ a new set of **n** particles is obtained, and we start the whole process again

Commissariat à l'énergie atomique et aux énergies alternatives

Stopping criterium:

- When n-k tracks have reached the "detector", the algorithm stops
- The number of iteration corresponding to reach that criterium is N
- > Each neutron is assigned a statistical weight α being:

$$\alpha = \left(1 - \frac{k}{n}\right)^N$$

An <u>unbiased estimator</u> of the flux is calculated "as usual" using the tracks of the last iteration

≻ n=3

≻ k=1

- \succ ξ : distance to the source
- Target: spherical shell (purple)
- 3 particles simulated from the source to their absorption (blue points)

- The importance function is the maximal distance to the source reached by the particle (red points)
- In this case the neutron tracks with the lowest score is n3

- Track number 2 is randomly sampled for the splitting
- A new particle is simulated from this splitting point until its absorption

- The score of this new tracks n3 is calculated
- The first iteration is over
- The stopping criterium is not meet: the iteration process goes on

Iteration 4

- Iteration 4
- n-k particles have reached the target, the algorithm stops
- The statistical weight of the particles is :

$$\alpha = \left(1 - \frac{1}{3}\right)^4$$

The flux is calculated according to standard MC flux estimators. For example the travelled length in the spherical shell can be used to tally the flux:

$$\varphi = \frac{1}{3}\alpha(l_1 + l_2)$$

CODE DEVELOPMENT

GEANT4

- TRIPOLI-4 @ CEA
- **Distributed by OECD/NEA**
- □ Neutron, gamma, e+, e-
- **E** < 20 MeV
- Evaluated cross-sections
- □ (Brun et al, 2015)
- www.cea.fr/energies/tripoli-4
- Nuclear industry

- Geant4 @ CERN
- Open-source
- All particles
- All energies
- Both evaluated cross-sections & models
- (Agostinelli et al, 2003)
- geant4.web.cern.ch
- **Fundamental / medical / spatial**

AMS has been implemented in a light (few classes) C++ framework Will be released and distributed as open-source package in 2021 Small 'user guide' to link it to other transport codes Provided with basic cost functions (distance to spatial detector, radial, ...) Verified through analytical benchmarks

ADAPTATION OF AMS FOR PARTICLE TRANSPORT

- > On-the-fly scoring
- Branching tracks
- Multi-particles/particles cascades
- Towards self-learning of the cost function

□ Many radiation protection problems require to score quantities "everywhere"

Flux calculation in the cooling pool of a reactor

Streaming problems as can be met in nuclear marine propulsion

Dose calculations while dimensioning shielding rooms

Cea ON-THE-FLIGHT SCORING

- □ Following (Brehier, 2016), the idea consists inbuilding a particle genealogy
- Old tracks are kept in memory
- New tracks = copy of the track selected for duplication from 1st point up to splitting point

We consider the analog Monte Carlo unbiased estimate ψ of a score ψ , where $(X_i)_{i \in [1,n]}$ is a set of analog tracks

$$\widehat{\psi}_{MC} = rac{1}{n} \sum_{i=1}^n \psi(X_i),$$

For any iteration q of the scoring process we define the following unbiased estimate:

$$\hat{\psi}_{q} = w_{q}\hat{\psi}_{q}^{\text{on}} + \sum_{j=0}^{q} w_{j}\hat{\psi}_{j}^{\text{off}}, \quad \text{with} \quad w_{j} = \begin{cases} \frac{1}{n} & \text{if } j = 0\\ \frac{1}{n} \prod_{i=0}^{j-1} \left(1 - \frac{K_{i}}{n}\right) & \text{if } j > 0 \end{cases}$$

$$\hat{\psi}_{q}^{\text{on}} = \sum_{X \in T_{q}^{\text{on}} \longrightarrow |\mathsf{T}/\xi| > \mathsf{Z}_{q}} \quad \hat{\psi}_{q}^{\text{off}} = \sum_{X \in T_{q}^{\text{off}} \longrightarrow |\mathsf{T}/\xi| < \mathsf{Z}_{q}} \quad \overset{\mathsf{K}_{q} = \text{\# tracks / } \xi < \mathsf{Z}_{q}}{\underset{\mathsf{Z}_{q}}{\operatorname{splitting level}}}$$

Cooling water pool

TRIPOLI-4 embedded deterministic solver for ~adjoint flux calculation

ξ either spatial or INIPOND

- > AMS FOM close to ET ...
- ... even with naïve ξ !

Labyrinth

- > 2 MeV isotropic neutron source
- > Air surrounded by concrete
- ET fails due to air concentration
- AMS ξ = 0 in concrete, growing following path to exit

(b) AMS neutron flux

(a) Analog neutron flux

CC2 ON-THE-FLIGHT SCORING + CADIS

CADIS* = Consistent Adjoint Driven Importance Sampling (Haghighat, 2003)

IDT = 3D Cartesian deterministic solver for the multigroup time-independent transport equation (Zmijarevic, 2001) AP3 = improved adjoint flux wrt anisotropy, upscattering, and energy during cross section condensation (Schneider, 2016) Many examples of branching structures in particle

Resampled track

FOM_{AMS}/FOM_{analog} ~ 10²

 $\star I_6$

Track to be duplicated

Investigating the use of machine learning to improve the estimation of the adjoint flux
 (Nowak et al, 2018)

□ Numerical 2-step scheme using AMS to adaptively improve the cost function / adjoint flux :

C22 "SELF LEARNING" SIMULATIONS

Standard MC estimator of the adjoint flux

Expected contribution c of a point in the phase space

$$x = (\overrightarrow{\mathbf{r}}, \overrightarrow{\mathbf{\Omega}}, E)$$

to a response (flux in a detector).

$$\psi^{\dagger}(P) = \mathbb{E}(c|P)$$

٠	N histories $\{T_0, \ldots, T_N\}$
•	$N_i \text{ points } \{P_0^{(i)}, \dots, P_{N_i}^{(i)}\}$

$$\psi^{\dagger}(P) = rac{\sum\limits_{P_i \in \mathcal{T}} c_i \, \mathbb{1}_{\delta P}(oldsymbol{r}_i, E_i, oldsymbol{\Omega}_i)}{\sum\limits_{P_i \in \mathcal{T}} \mathbb{1}_{\delta P}(oldsymbol{r}_i, E_i, oldsymbol{\Omega}_i)}$$

AMS estimator of the adjoint flux => the same with weights given by

"SELF LEARNING" SIMULATIONS

Commissariat à l'énergie atomique et aux énergies alternatives

Use of AMS in reactor physics

- Chain reaction & population control
- > Spatial correlations
- AMS & branchless collisions
- > Results

Ceal APPLICATION TO REACTOR PHYSICS : CRITICALITY CALCULATIONS

- Neutron transport in fissile media (birth/death-killing process)
- Critical Boltzmann equation
- **Simplified mono-E model : BBBM with population control**
- Population control usually done via 'power iteration'
- Eigenvalue: reproduction factor α (t) or keff (g)
 Eigenvectors: power distribution

900 MW PWR

Population control algo. to keep N constant

1D mono-E rod

shape

Ceal APPLICATION TO REACTOR PHYSICS : SPATIAL CORRELATIONS

Power iteration induces a saturation of spatial correlations while preserving them

Ceal APPLICATION TO REACTOR PHYSICS : AMS

- □ AMS can be seen as a tool for both
 - population control
 - variance reduction
- **Example:**
 - keff<1</p>
 - detector = time/generation
- rare event = surviving population
 Similarity with a Fleming-Viot particle system

Cea APPLICATION TO REACTOR PHYSICS : POPULATION CONTROL

□ AMS used in combination with branchless collisions

APPLICATION TO REACTOR PHYSICS : COST FUNCTION

10

10.0

7.5

5.0

2.5

01²³ 456 10

mportance

80 cm slab / binary branching 'almost'-Brownian motion 100 independent simulations / 1000 neutrons per generation / 1000 generations Spatial correlations are strongly attenuated (less clustering)

Cea APPLICATION TO REACTOR PHYSICS : FOM

FOMs are sensitively improved

And spatial correlations are tempered

Leaves room for (spatial, directional, energetic, generational/time) variance reduction !

CONCLUSIONS

□ AMS vs exponential transform :

- If exponential transform uses 0-variance schemes, AMS exhibits lower FOM
- Way more robust (the cost function is only sensitive to ranking)
- Requires less specific user skills (0-variance schemes of ET can take weeks to be tuned)
- Only viable option to preserve correlations
- ❑ Already used in "production code" by the nuclear industry (TRIPOLI-4[®]) in radiation protection contexts

Developments on their way to popularize the method in (astro-)particle physics (Geant4)

- Physics beyond standard model. Ex: background calculation of elastic neutrino-nucleus scattering experiments
- > Dark matter experiments where both signal&background look for rare events

Openings towards quantum mechanics codes (diffusion Monte Carlo) following the developments of AMS for eigenvalue/eigenvectors problems

Cea References

- □ F. Cérou and A. Guyader, "Adaptive Multilevel Splitting for Rare Event Analysis", Stochastic Anal.Appl. 25,2, 417 (2007).
- □ F. Cérou, et al. "A multiple replica approach to simulate reactive trajectories", Journal of Chemical Physics, 134, 054108, (2011).
- D. Aristoff, T. Lelièvre, C.G. Mayne and I. Teo. "Adaptive multilevel splitting in molecular dynamics simulations" ESAIM Proc., 48:215-225, (2015).
- CE Bréhier, M. Gazeau, L. Goudenège, et al. "Unbiasedness of some generalized Adaptive Multilevel Splitting algorithms." The Annals of Applied Probability, 26(6):3559–3601 (2016).

- H. Louvin et al., "Adaptive Multilevel Splitting for MonteCarlo Particle Transport", Eur. Phys. J.
 Nucl. Sci. Technol. 3,29 (2017).
- H. Louvin, "Development of an Adaptive VarianceReduction Technique for Monte Carlo Particle Transport", PhD Thesis, Paris-Saclay University (2017).
- M. Nowak et al, "Accelerating Monte Carlo Shielding Calculations inTRIPOLI-4 with a Deterministic Adjoint Flux », Nucl. Sci. Eng., 193 (2019).
- Mancusi et al., « Evaluating importance maps for using deterministic or on-line methods », ANS RPSD Proceedings (2018)

- M. Nowak et al, "Accelerating Monte Carlo Shielding Calculations inTRIPOLI-4 with a Deterministic Adjoint Flux », PhD thesis, Paris-Saclay University (2018).
- E. Brun et al., "Tripoli-4[®], CEA, EDF and AREVA Reference Monte Carlo Code", Ann. Nucl. Energy 82,151 (2015).
- S. Agostinelli et al., "Geant4, a simulation toolkit", Nuclear Instruments and Methods in Physics A, Vol 506 (2003)
- I. ZMIJAREVIC et al, "Deterministic Solutions for 3D Kobayashi Benchmarks," Prog. Nucl. Energy, 39, 207 (2001); https://doi.org/10.1016/S0149- 1970(01)00013-0.
- D. SCHNEIDER et al., "Apollo[®]: CEA/DEN Deterministic Multi-Purpose Code for Reactor Physics Analysis," Proc. PHYSOR 2016 Conf., Sun Valley, Idaho, May 1–5, 2016, p. 2274, American Nuclear Society (2016).

Thank you for your attention

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr